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Abstract

In this article we have used the new double inversion technique in the Somé Blaise Abbo(SBA) method to
solve some fractional order partial differential equations (edp) in the Caputo sense of the Schrodinger type by
integrating all boundary conditions.
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1 Introduction

In this manuscrite we are interested in solving Schrédinger problems with initial and Neumann conditions.
These types of problems model quantum, probabilistic and many other phenomena [1-5]. Indeed, some reference
works present in the literature for example in 2016 S.O. Edeki, G.O. Akinlabi and S.A. Adeosun in [6] used the
modified differential transformation method to determine solutions of linear Schrédinger equations of fractional
order [7,8]. In 2007 S. Wang and M. Xu [9] in made a generalized fractional study of the Schrédinger equations.
In 2004 C. BESSE in [10] applied numerical methods and artificial boundary conditions for linear and nonlinear
Schrodinger equations and modeling irregularities in terrestrial ionospheric plasma [11,12,13,14]. This work is
organized in four sections, the second of which presents some fractional tools, the third describes the solution
strategy, the fourth determines the analytical results of fractional Schrodinger-type models and the last section
gives the conclusion.

2 Preliminaries

In this section, we define the fractional derivative and the fractional integral. For definitions of the Mittag
Leffler, Gamma and Béta functions, we refer to the documents [9].

2.1 Caputo derivatives

Definition 1. Caputo’s fractional derivatives on the right denoted by cpa, and on the left symbolized by cpa_
are established respectively by the following formulas:

g 0(0) = iy |, @ =0 @ > 0 (2.1)

Jj—«

cDgip(x) = ﬁ /::(u — Jc)j_a_lp(j)(u)du7 a>0 (2.2)

where j = [a] + 1, [@] defines the integer part of a.

2.2 Integral in the riemann-liouville sense

Definition 2. If p is defined in C([0, +00]) then that of order a > 0 of the function p is defined by:

1

I*(p)(z) = @) /:(:L‘ —u)* 'p(u)du, t >0 (2.3)

I°(p)(x) = p(x) (2.4)

This defines the left-hand integral in the Riemmann-Liouville sense.
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3 Description of the Technique

The description of this strategy is based on the approach taken by the inventors in [15], and the technique that
will be adapted to our fractional problem is defined in a Banach space denoted B, and is formulated as follows:

Diu = Lyo(u) + f(z,t),t>0,0<a<1,0<z<a
uD(x,0) =w;, i=0,1,...,5 — 1

Au(0,t) — h(t) (3.1)
x
du(a,t)
—— =h(t
p (t)
Where:
D{u presents the fractional derivative of order « in Caputo’s sense;
u € B solution of the problem.
In posing:
Li'()=1 a)(-)
0 (3.2)
L.()=—=
=%
Ly'() = ds
0
Where L™! is an invertible operator in the Adomian sense.
The equation (3.1) will give us the following two equations:
Liu = Ly(Lgu) + f(z,t), (3.3)
where
Lo (Lyu) = Le(u) — f(x,t). (3.4)
Then the canonical form associated with (3.3) is:
Ly'Low =Ly 'Ly (Lau) + Ly ' f (2, 1) (3.5)
izl () izl ()
1 _ u (0) i _ u (O) i
L, Ltufu(t)—. i t,zfz a t
i=0 =0
Jj = [a] + 1, [a] defines the integer part of a. So the equation (3.5) becomes:
u(z,t) = 24 Ly "Ly (Lou) + Ly f(z,t) (3.6)

17



Himeda et al.; Asian Res. J. Math., vol. 20, no. 9, pp. 15-25, 202/; Article no. ARJOM.120697

By composing L; ' with equation (3.4) we obtain:
0= (—h(t) +9(t)) + Li" (Leu + f(z,1)) (3.7)
By adding (3.6) and (3.7) we get:
u(z,t) = 2+ Ly ' Lo(Lou) + Ly ' f(2,) + (—Rh(t) + g(t) a + Ly ' Lyw + Ly ' f(x, ) (3.8)
Successive approximations applied to (3.8) give:

(@, t) =z 4+ (h(t) + g(t) a+ Ly ' f(z,t) + Li ' f(w,t) + Ly ' Lo (Lou”™) + L' Liw®, k>1 (3.9)

Applying the SBA algorithm to (3.9) we have:

(3.10)

up = Ly ' La(Lauj_y) + Ly ' Liug

Then, if the analytical solution u exists, we obtain:

400

2 : 1
u = U

k=0

4 Applications

Example 1. Consider the following equation :

o O0%H (z,t)
D¢ H(z,t) + i

H(z,0) = >
OH(0,t)
WY o
Jx
O0H(m,t) 0

ox

=00<zz<m0<a<1,t>0

(4.1)

Taking H(z,t) = u(x,t) + iv(z, t) and replacing it in equation (4.1) we get:

0% (u(z,t) +iv(x,t))
pre =0 (4.2)

Df (u(z,t) + tv(x, t)) + 14

By identifying the real and imaginary parts, we have:
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o 0?v(x, t)
Dt U(m,t) = W )
. u(x,t
Dt ’U(Z’,t) = —W
u(z,0) = cos 2z
aug;, t) —0
Ou(m,t) 0
or
v(z,0) = sin 2z
81}6(92, t) — 0
ov(m,t) 0
or

The 2 equations of the system (4.3) can be rewritten as follows:

where:

Applying the inverse of L:(.) to equation (4.4) we get:
u(@, t) = u(w,0) + Ly (Lio(v)
ol 1) = 0(2,0) + L (~12, (u))
By adding the inverse of L(.) to equation (4.

>

), we obtain:

By adding member by member (4.6) and (4.7)

u(z,t) = u(z,0) + (Lzz (Le(v) + Ly (L2 (v)))
v(z,t) = v(@,0) + (Lig (Le(w)) + Ly (= L2. ()
The successive approximation applied to (4.8) gives us:

{uk(w,t) =u"(2,0) + (L (Le(v®)) + Ly 1 (L2, (0%))) k2 1
¥ (x,t) = v*(2,0) + (L7 (Le(u®)) + Ly (L2, (u"))) k> 1

(4.3)

(4.4)

(4.5)

(4.7)

(4.8)
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Then the SBA algorithm will be:

ui(w,t) = (= Ly ' (Le(vd)) + Ly ' (L22(v5)))

(4.10)
up (2,t) = (=Lz ' (Le(vp 1)) + Ly (L2 (v 1))
v (z,t) = v'(z,0)
vi(@,t) = L' (Le(ug)) + Ly (—Ls (uo))

(4.11)
up(z,t) = (Lg ' (Le(un—1)) + Ly (= Lo (ui-1)))

Determining solutions:

up(z,t) = (cos 2z)
vg(x,t) = sin 2
ui(@,t) = (L (La(vo)) + L (Lzx (v0))

—4sin 2z

LY (L3, (vp)) = Tla+1)

L;l(Lt(vé)) = /07T (Df(vé(@t))) dzdz

Di (v (2, ) = ﬁ/{) (t— 5)*‘1%&9

So

—4sin2x
INa+1)
1

vi(@,t) = Ly (Le(ug)) + Ly (= Lz, (u)))

_ a O%ud(z,t 4cos2x
L Laa(uo)) =1 (_ 5952 )) T+’

ui(% t) =

LM (Lo(ud)) = / " (D? (ud (2. 1)) dedz

Dy (ub(z1)) = ﬁ/ (¢ — 5y 2022) g,
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= L t —5)"%(0)ds
el ADRIOL
=0.
So 4cos?2
u@h =gt

us(w,t) = (—Li2(Le(v1)) + Ly (L2, (v1)))

- o [0%v](z,t —4%sin 2z 4,
L' (Lae(01) =1 < ali,z )) T TRa+1) :

LML) = / " (D2 (v} (2. 1)) ddz

Dy (vi(z,1)) = ﬁ/o (t—s)*aavléiaS)dS

4o cos 2z t o o
Da 1 t _ t— [ ld
C0 = 0) = S e+ 1) /0 (8= s) "™ ds
Let’s say s = yt, t = 2 and ds=tdy.

So it becomes:
4o cos 2z

Df (vi(z,t)) = m/g y (1 —y) ds

4accos 2z
rl-—al(a+1)
(4accos2z)(T(1 — a))(T'(2 — )
(T = a)(T(a+1))ITB - 2a))

D?(U%(z,t)) = B(l-—ao,2—a)

D} (vi(z,t)) =

1a(0(2 — @)
T(a+ )3 —2w))

D (vi(z,1)) = cos 2z.

So
» L 40T'(2 — ) " s 2zdz
Ly (Le(vr)) = (T(a+ 1)(T(3 - 2a)) /0 cos2zd
Ly (Li(v1)) =0
Hence
u%(m,t) _ —4% coS2x 94

T(2a+1)
vy (x,t) = (Lya (Le(ur)) + Ly (= L2, (ul)))

_ 0%ui(z,t) —42 sin 22
1 2 1 _ga | 1 ) — [
Ly (—Leo(w)) =1 ( 912 ) Ta+1)

L' (Le(uy)) = /07T (Df(ui(z,t))) dzdz

21



Himeda et al.; Asian Res. J. Math., vol. 20, no. 9, pp. 15-25, 202/; Article no. ARJOM.120697

DP(uk(e01) = gy | (0= o) "2

- I‘(ll—oz) /t(t -9 [_Fll(zsjrnlixsa_l] ds

4 sin 23: _
Da 1 — _ @ a 1
i (ui(z,t)) ST — o)l (a + 1) / (t—s) ds.

Using the same procedure as above for Df (v1(z,t)), we obtain:

& () _ 4o(D(2 - )) :
D¢ (uy(z,t)) = "Mt D) TG = 2a)) sin 2z

— 4al'(2 —a) 7rsin zdzdz
TGz, e

D (ul(z,1)) = 0.

L' (Le(ur)) =

Hence

So, step by step, we can deduce that:

“+oo
H' = Z(uh + ivy,)

n=0

(e 2
= (cos 2z + isin 2z) + 4@'(005323: + isin Zx)m + (4i)*(cos 2 + i sin 2:8)@
+(44)3(cos 2x + i sin Zx)m + ..+
— [4it*]" [4it]? [4it™)? .
- IFla+1) T'(a+1) TI'Ba+1)
2zz - 4Zta "

o F (na+ 1
Hl — 211Ea(4lta)

As by hypothesis we have N;(u,v) = 0,5 = 1,2, therefore the solution of the problem is:

H(z,t) = " B, (2it™).
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Example 2. Consider the following equation:

O H (1)
22
H(z,t) +i—7 5
( ,0) = 14 cosh2z
9H(0,1) (4.12)
e =0
OH(m,t) 0
or
Proceeding in the same way as the previous example, we get:
1 1 _
up(z,t) = u'(z,0) = 1 + cosh2x vo(z,t) = v (2,0) =0
1 1 _4cosh2z
ul(m7t):0 vl(‘rvt)_l—\(a+1)
1 —4%cosh2z o, 1 _
uy(z,t) = va(z,t) =0
1 —4°cosh2z 3,
u(z,t) =0 v3(2,t) = =
’ and I'(Ba+1)
(=1)" " cosh2z ,  .\n 43cosh?
Uz, (T, 1) (4t™) 1 ) = 2 COSNAT 54
T(3a+1) Van41 (T, t) TGa+1)
Then the approximate solution at the first iteration is:
+oo
H, = Z(ui + ivy,)
n=0 5
t (o3
— 4%icosh 22) =————
+(0 icosh 2x) TGa 1)
[4it>]* [4it]? [4it™)?
=1 h2 h2x——— h2r ——— h2r ———
+ cosh 2x + cos xF(aJrl) ~+ cos IF(20¢+1) ~+ cos mF(3a+ )
[4it>]™
1 h 2 _
= [1 4 cosh2z >0 T(na 1)
H, =1+ cosh2zE,(4it*)

Hence the analytical solution:
H(z,t) =1+ cosh 2z E, (4it™)
5 Conclusion

In this article we have used the gymnastics of double inversion resulting from that of SBA to determine the
solutions of fractional-order Schrédinger equations in the sense of Caputo with initial and Neumann conditions.
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The results thus obtained converge with those determined by other analytical methods. This strategy is well
suited to fractional-order models.
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