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ABSTRACT 
 

The Rapti River basin in India is a region increasingly vulnerable to extreme precipitation events, 
which pose significant challenges to water resource management and flood mitigation. This study 
investigates the extreme precipitation patterns in the Rapti River Basin, India, by analyzing 
historical and projected data using advanced climate models and indices. Utilizing the Expert Team 
on Climate Change Detection and Indices (ETCCDI) framework, we focus on Consecutive Dry 
Days (CDD). The study evaluates the trends under different global warming scenarios of 1.5˚C, 
2˚C, and 3˚C, employing ACCESS-CM2 Model. The findings reveal significant variations in the 
trends and magnitudes of CDD across the different warming levels. At 1.5˚C, CDD shows a 
decreasing trend. At 2˚C, models project a continued decrease in CDD. At 3˚C, mixed trends are 
observed with notable increases in CDD, highlighting the potential for prolonged wet periods and 
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increased flood risks. The study underscores the impact of climate change on the hydrological 
behavior of the Rapti River Basin, emphasizing the need for adaptive water resource management 
strategies. It provides valuable insights into the future precipitation trends in the Rapti River Basin, 
guiding the development of strategies to enhance resilience against climate-induced hydrological 
changes. 
 

 
Keywords: Consecutive dry days; rapti river basin; climate projection; ETCCDI indices. 
 

1. INTRODUCTION 
 
The increasing impact of climate change on 
hydrological systems is a critical concern for 
water resource management, agriculture, and 
environmental sustainability. The Rapti River 
Basin, a significant tributary of the Ghaghara 
River in northern India, has been experiencing 
frequent extreme weather events, particularly 
prolonged dry periods, known as Consecutive 
Dry Days (CDD). Understanding and predicting 
these CDD trends under future climate scenarios 
is essential for developing effective adaptation 
and mitigation strategies. 
 
Climate change, driven by anthropogenic 
activities, has led to significant alterations in 
global weather patterns, including increased 
frequency and intensity of extreme events [1]. 
The Intergovernmental Panel on Climate Change 
(IPCC) projects that with rising global 
temperatures, the variability and intensity of 
precipitation events will become more 
pronounced [2]. This has significant implications 
for regions like the Rapti River Basin, where 
agriculture and livelihoods are heavily dependent 
on consistent and predictable rainfall patterns. 
 
Recent studies have highlighted the importance 
of modeling climate impacts on hydrological 
processes to understand future risks and inform 
policy decisions [3,4]. Process-based models, 
such as the Soil and Water Assessment Tool 
(SWAT), have been widely used to simulate the 
effects of climate change on water resources [5]. 
However, the application of climate projection 
models, such as ACCESS-CM2, provides a more 
detailed and localized understanding of future 
climate scenarios. 
 
The Rapti River Basin has been prone to both 
droughts and floods, with historical records 
indicating severe flooding events in 1992, 1998, 
2000, 2008, 2014, 2017, 2018, 2019, and 2020 
[6]. These events underscore the basin's 
vulnerability to extreme weather and the 
necessity for robust predictive models to guide 
water resource management and agricultural 

planning. With the projected increase in global 
temperatures, it is crucial to assess how these 
changes will influence the occurrence and 
duration of CDD in the basin.  
 

Therefore, this study aims to understand the 
rainfall characteristics of the Rapti River Basin. It 
includes an analysis of daily, seasonal, and 
annual rainfall using gridded rainfall data for the 
Rapti Basin. The study also focuses on 
examining the temporal variability of rainfall with 
ETCCDI indices, analyzing trends in the gridded 
rainfall data, and understanding the rainfall 
characteristics of the basin. Additionally, the 
research aims to determine the change point in 
rainfall patterns within the basin and relate this 
change point to flooding events. The findings 
indicate that flooding in the basin increases after 
the identified change point. Gorakhpur, situated 
in the downstream area of the basin, is the most 
flood-prone region, despite experiencing the 
highest number of consecutive dry days. Rainfall 
in the upstream areas significantly contributes to 
flooding in Gorakhpur. 
 

This study aims to investigate the variability and 
trends in extreme precipitation within the Rapti 
River Basin from the historical data, 1971 to 
2014 provided by Indian Meteorological Data, 
Pune and the projected data, 2015 to 2100 using 
bias corrected CMIP6 Datasets. By employing an 
iterative Mann-Kendall trend test, we seek to 
provide a comprehensive understanding of 
historical precipitation extremes and their 
potential future trajectories. Understanding these 
patterns is crucial for developing effective 
strategies to mitigate the adverse effects of 
climate change and to enhance the resilience of 
the communities dependent on the Rapti River 
Basin. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The Rapti River Basin is located primarily in the 
northern part of India, within the state of Uttar 
Pradesh. The basin stretches approximately 
between the latitudes of 26.5°N to 28.5°N and 
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the longitudes of 82.5°E to 84.5°E. In India, the 
Rapti River flows through several districts 
including Bahraich, Shravasti, Balrampur, 
Siddharthnagar, Gorakhpur, and Sant Kabir 
Nagar. The total area covered by the Rapti River 
Basin in India is roughly around 30,000 square 
kilometers. This area is characterized by a mix of 
agricultural land, forests, and urban settlements, 
with the river playing a significant role in the 
region's agriculture and economy [7]. 
 
The geography of the Rapti River Basin is 
diverse, encompassing the Terai plains at the 
foothills of the Himalayas. This region is known 
for its fertile soil, making it an important 
agricultural zone. The terrain is generally flat with 
some undulating areas, particularly closer to the 
river. The basin is prone to flooding during the 
monsoon season due to the flat topography and 
heavy rainfall [8,9]. 
 
The climate of the Rapti River Basin is 
predominantly subtropical, with distinct seasons: 
Summer (March to June): Hot and dry, with 
temperatures ranging from 30°C to 45°C. 
 
Monsoon (July to September): Marked by heavy 
rainfall, with the region receiving an average 
annual precipitation of about 1,200 to 1,500 mm. 
This period is crucial for replenishing water 
resources but also brings the risk of floods. 
 
Winter (October to February): Mild and dry, with 
temperatures ranging from 5°C to 25°C [10,11]. 
 
The temperature in the Rapti River Basin 
varies significantly with the seasons: 
 
Summer: High temperatures often exceed 40°C 
during peak periods. 
 
Monsoon: Temperatures are relatively lower 
than in summer, ranging from 25°C to 35°C, but 
humidity levels are high. 
 
Winter: Temperatures can drop to around 5°C 
during the coldest months, with daytime 
temperatures ranging between 15°C and 25°C. 
 

2.2 Metreological Data 
 
The rainfall datasets (1971-2014) was collected 
from the Indian Meteorological Department 
(IMD), Pune, and the long-term annual data 
(2015-2100) for CDD, i.e., the maximum annual 
number of consecutive dry days (when 
precipitation < 1.0 mm),obtain from Centre for 

Climate Change Research, Pune were used in 
this study. The bias-corrected CMIP6 datasets 
used in the study are available at 
https://zenodo.org/record/3873998#.Y7xgvnZBy0
1  for the Indian region at 0.25° × 0.25° grids 
given by Aadhar and Mishra [12]. 
 

2.3 Mann- Kendall Test for Trends 
 
The Mann-Kendall test is a non-parametric 
statistical test used to detect trends in time series 
data. It is particularly useful for identifying 
monotonic trends in environmental data, such as 
precipitation or temperature, without requiring the 
data to follow a specific distribution. The test is 
named after [13 and 14], who developed it in the 
late 20th century. 
 
The Mann-Kendall test statistic (S) is calculated 
based on the number of positive and negative 
differences between data points.  
 
For a time series of n data points 
{x1,x2,.............…,xn}: 
 

𝑠 =  ∑ ∑ 𝑠𝑔𝑛

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

(𝑥𝑗 − 𝑥𝑖)                                                   (1)   

 
Where, 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓(𝑥𝑗 − 𝑥𝑖) < 0

}                                              (2) 

 

𝑉𝐴𝑅(𝑠) =  
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)

𝑚
𝑖=1

18
                             (3) 

 
Where tirepresents the number of data points in 
the ith tied group, m is the total number of tied 
groups (a tied or connected group consists of a 
set of data points with the same value), and n is 
the total number of data points.  
 
The standard test statistic Z is calculated using 
the following formula: 
 

𝑍 = 

{
 
 

 
 

𝑠−1

√𝑉𝐴𝑅(𝑠)
𝑖𝑓𝑠 > 0

0 𝑖𝑓𝑠 = 0
𝑠+1

√𝑉𝐴𝑅(𝑠)
𝑖𝑓𝑠 < 0

⬚

                                            (4) 

 
The statistical significance Z of the test statistics 
is evaluated at three different levels of 
significance: 1%, 5%, and 10%. If the time series 
exhibits a strong lag-1 serial correlation, the 
Mann-Kendall (MK) test with pre-whitening is 
employed, as recommended by Yue et al. [15]. 

https://zenodo.org/record/3873998#.Y7xgvnZBy01
https://zenodo.org/record/3873998#.Y7xgvnZBy01
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Fig. 1. Location of the study area 
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Table 1. 59 Stations located in India and Nepalof Rapti River basin 
 

Stations Latitude Longitude Stations Latitude Longitude 

01 26.375 83.375 31 28.375 81.625 
02 26.375 83.625 32 27.875 81.875 
03 26.375 83.875 33 28.125 81.875 
04 26.625 83.125 34 28.375 81.875 
05 26.625 83.375 35 27.875 82.125 
06 26.625 83.625 36 28.125 82.125 
07 26.625 83.875 37 27.875 82.375 
08 26.875 82.625 38 28.125 82.375 
09 26.875 82.875 39 28.375 82.375 
10 26.875 83.125 40 28.625 82.375 
11 26.875 83.375 41 27.875 82.625 
12 27.125 82.125 42 28.125 82.625 
13 27.125 82.625 43 28.375 82.625 
14 27.125 82.875 44 28.625 82.625 
15 27.125 83.125 45 27.625 82.875 
16 27.125 83.375 46 27.875 82.875 
17 27.125 83.625 47 28.125 82.875 
18 27.375 82.125 48 28.375 82.875 
19 27.375 82.375 49 28.625 82.875 
20 27.375 82.625 50 27.625 83.125 
21 27.375 82.875 51 27.875 83.125 
22 27.375 83.125 52 28.125 83.125 
23 27.375 83.375 53 28.375 83.125 
24 27.375 83.625 54 27.625 83.375 
25 27.625 81.875 55 27.875 83.375 
26 27.625 82.125 56 27.625 83.625 
27 27.625 82.375 57 27.875 83.625 
28 27.625 82.625 58 27.375 83.875 
29 27.875 81.625 59 27.625 83.875 
30 28.125 81.625    

 
Table 2. Precipitation indices used in this study 

 

Index Precipitation Duration Definition Unit 

CDD Consecutive Dry Days Maximum annual number of 
consecutive dry days (i.e., when 
precipitation < 1 mm) 

days 

 
2.3.1 Sen's slope estimator 
 
To quantify the magnitude of the trend, Sen’s 
Slope Estimator is often used. It             
calculates the median slope between all pairs of 
data points. 
 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 [
𝑥𝑗−𝑥𝑖

𝑗−𝑖
] f or all i < 𝑗                   (5)  

 
Where 1<j<i<n and β is the robust estimate of 
the trend magnitude. A positive value of β 
indicates an 'upward trend', while a negative 
value of β indicates a 'downward trend' (Xu et al., 
2007). Xjrepresents the data value at time j, and 
Xi represents the data value at an earlier time i. 

The relative change is calculated using the 
following equation [16]: 
 

RC =
n∗β

|x|
∗ 100                                              (6) 

 
Where, ∣x∣is the absolute average value of the 
time series, n is the length of the time series, and 
β is the trend slope estimated using Sen's 
median estimator. 
 

2.4 Shared Socioeconomic Pathways 
(SSPs) 

 

Shared Socioeconomic Pathways (SSPs) are a 
set of scenarios used to model and understand 
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potential future global changes in climate, 
economics, and society. Developed as part of the 
framework for climate change research, SSPs 
help in examining how different societal trends 
might influence greenhouse gas emissions, 
climate policies, and adaptive capacities [17,18]. 
They are integral to the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) and 
are used in conjunction with Representative 
Concentration Pathways (RCPs) to provide a 
comprehensive view of possible futures. 
 
SSPs are used in various fields of research and 
policy-making to explore and plan for future 
scenarios: SSPs are combined with RCPs to 
create integrated scenarios that model both 
socioeconomic and climate changes. This helps 
in understanding the potential impacts of different 
levels of greenhouse gas emissions. 
Researchers use SSPs to assess the impacts of 
climate change on various sectors, including 
agriculture, water resources, health, and 
infrastructure. These assessments help identify 
vulnerabilities and inform adaptation strategies. 
 

2.5 Extreme Precipitation Indices 
 

Extreme precipitation indices are quantitative 
measures used to assess and characterize 
extreme rainfall events. These indices help in 
understanding the frequency, intensity, duration, 
and spatial extent of extreme precipitation, which 
are crucial for studying climate variability, 
assessing water resources, and managing risks 
associated with floods and droughts. Here are 
some common extreme precipitation indices. The 
11 precipitation indices are categorized based on 
their characteristics into measures of 
precipitation intensity, frequency, and duration 
across various precipitation schemes, as outlined 
in reference [19]. Using the Expert Team on 
Climate Change Detection and Indices (ETCCDI) 
indexes, the characteristics of extreme rainfall 
are assessed. ETCCDI provided twenty-seven 
core indices to determine the characteristics of 
precipitation and temperature [20]. Among these 
indices, CDD (Consecutive Dry Days) is used in 
this study to measure precipitation 
characteristics. The descriptions of the indices 
used are provided in Table 2. 
 

2.6 Projected Changes of Precipitation 
Extremes at 1.5 °C, 2 °C and 3°C 
GWLs 

 

Understanding the projected changes in 
precipitation extremes at various global warming 
levels (GWLs) is crucial for anticipating future 

climate impacts on the Rapti River Basin [21-22]. 
The analysis focuses on three key warming 
thresholds: 1.5°C, 2°C, and 3°C above pre-
industrial levels. These projections are based on 
climate model simulations and provide insights 
into how increasing global temperatures may 
alter extreme precipitation patterns in the basin. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Annual Precipitation Extremes 
 

We evaluated four precipitation extremes using 
Model ACCESS-CM2, under various global 
warming levels of 1.5˚C, 2˚C, and 3˚C, across 
multiple time scales. 
 
The range of maximum Consecutive Dry Days 
(CDD) values at 1.5˚C (2020-2031) varies 
between 208 days and 49 days for the ACCESS-
CM2 Model, ssp 585, with the minimum value 
ranging from 72 days to 28 days. 
 

The highest CDD value at 2˚C (2032-2050) for 
ACCESS-CM2 Model, ssp 585, spans between 
166 days and 60 days, while the lowest value 
varies from 102 days to 22 days. 
 

The highest CDD value at 3˚C (2051-2060) for 
ACCESS-CM2 Model, ssp 585, varies between 
136 days and 53 days, with the lowest value 
ranging from 68 days to 24 days. 
 

3.2 Annual Trend Analysis of Extreme 
Precipitation Indices 

 

During the period of 2020-2031 at 1.5˚C, under 
Model ACCESS-CM2 (M1), ssp585, the 
Consecutive Dry Days (CDD) show a notable 
decrease in trend, with a reduction of -0.34 (-
0.45), corresponding to a decrease in slope of -
1.08 days per year. In contrast, for Model 
ACCESS-ESM1-5 (M2), there is a more 
significant decrease in trend, amounting to -2.90 
(-1.43), resulting in a decrease in slope of -6.49 
days per year. 
 

Under Model ACCESS-CM2, ssp585, at 2˚C 
(2032-2050), there is a notable decrease in trend 
for Consecutive Dry Days (CDD) of -0.08 (-0.93), 
resulting in a decrease in slope of -8.07 days per 
year.  
 

At 3˚C (2051-2060), under Model M1, ssp585, 
there is a substantial decrease in trend for 
Consecutive Dry Days (CDD) of -1.59 (-1.45), 
resulting in a decrease in slope of -3.42 days per 
year. 
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Table 3. Detail of selected climate models of CMIP6 for the study 
 

Sr. 
No. 

CMIP 6 
Model 

Description Precipitation indices under GWLs 

CDD CDD CDD 

1.5˚C 2˚C 3˚C 1.5˚C 2˚C 3˚C 1.5˚C 2˚C 3˚C 

1 M1 ACCESS-CM2 2020-2031 2032-2050 2051-2060 2020-2031 2032-2050 2051-2060 2020-2031 2032-2050 2051-2060 
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Fig. 2. Consecutive Dry Days (CDD) atACCESS-CM2 model for 1.5˚ 
 

 
 

Fig. 3. Consecutive Dry Days (CDD) atACCESS-CM2 model for 2˚ 



 
 
 
 

Kumari et al.; Int. J. Environ. Clim. Change, vol. 14, no. 7, pp. 343-355, 2024; Article no.IJECC.119205 
 
 

 
351 

 

 
 

Fig. 4. Consecutive Dry Days (CDD) atACCESS-CM2 modelfor3˚ 
 

 
 

Fig. 5. Trends of Consecutive Dry Days (CDD) at ACCESS-CM2 model for 1.5˚ 
Here,  = -10 indicate a decrease in the number of consecutive dry days by 10 days 

= 0 indicates no change in the number of consecutive dry days 
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Fig. 6. Trends of Consecutive Dry Days (CDD) atACCESS-CM2 model for 2˚ 
Here,  = -5 indicate a decrease in the number of consecutive dry days by 5 days. 

 = 0 indicates no change in the number of consecutive dry days 

 

 
  

Fig. 7. Trends of Consecutive Dry Days (CDD) at ACCESS-CM2 model for 3˚ 
Here, = 0 indicates no change in the number of consecutive dry days 

= -1 indicate a decrease in the number of consecutive dry days by 1 day 
 = -5 indicate a decrease in the number of consecutive dry days by 5 days 
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3.3 Discussion 
 
The study focused on predicting future trends in 
consecutive dry days (CDD) within the Rapti 
River Basin using the ACCESS-CM2 climate 
projection model. Understanding the projected 
changes in CDD is crucial for water resource 
management, agricultural planning, and 
mitigating potential drought impacts in the region. 
The findings provide valuable insights into the 
future climate dynamics of the Rapti River Basin 
and highlight areas of concern for policymakers 
and stakeholders. 
. 

• Future Projections of Consecutive Dry 
Days: The analysis revealed a significant 
increase in the number of CDD in the 
future, particularly under higher emission 
scenarios. The projections indicate that the 
frequency and duration of dry spells are 
likely to intensify, which can have severe 
implications for water availability, 
agriculture, and ecosystem health in the 
basin. The increase in CDD is more 
pronounced during the dry season, 
exacerbating the stress on water resources 
during critical periods. 

• Implications for Water Resources: An 
increase in CDD directly impacts the 
hydrological cycle, reducing streamflow 
and groundwater recharge rates. This can 
lead to a depletion of water resources, 
affecting both surface and subsurface 
water availability. The findings suggest that 
the Rapti River Basin may face significant 
water scarcity issues in the future, 
necessitating proactive measures in water 
management and conservation strategies. 
The need for efficient water storage, 
distribution systems, and sustainable 
groundwater management practices 
becomes paramount to mitigate the 
adverse effects of prolonged dry periods. 

• Agricultural Impacts: Agriculture, being 
the primary livelihood for many inhabitants 
of the Rapti River Basin, is highly 
vulnerable to changes in precipitation 
patterns. Extended periods of consecutive 
dry days can severely affect crop yields, 
soil moisture levels, and overall agricultural 
productivity. The study underscores the 
necessity for adaptive agricultural 
practices, such as drought-resistant crop 
varieties, improved irrigation techniques, 
and soil moisture conservation methods. 
Policymakers should prioritize the 
development and dissemination of these 

practices to ensure food security in the 
face of changing climate conditions. 

• Drought Preparedness and 
Management: The projected increase in 
CDD highlights the urgent need for 
comprehensive drought preparedness and 
management plans. This includes the 
establishment of early warning systems, 
drought monitoring networks, and 
community-based drought response 
strategies. Integrating climate projections 
into local and regional planning can 
enhance the resilience of                    
communities and ecosystems to future 
drought conditions. 
 

4. CONCLUSION 
 

This study provides a comprehensive analysis of 
extreme precipitation events in the Rapti River 
Basin, India, utilizing multiple models and indices 
to evaluate both historical and projected trends.  
 

• The findings highlight significant variations 
in the trends and magnitudes of 
Consecutive Dry Days (CDD) across 
different global warming levels of 1.5˚C, 
2˚C, and 3˚C. 

• The analysis indicates that the Rapti River 
Basin is experiencing significant changes 
in precipitation patterns, driven by climate 
change. Under the various models and 
scenarios analyzed, the results show both 
increases and decreases in the trends of 
CDD with notable variations in the slopes, 
reflecting the complex and dynamic nature 
of the basin's hydrological response to 
global warming. 

• Specifically, at 1.5˚C, there is a decreasing 
trend in CDD, suggesting variability in dry 
spells. At 2˚C, the models project a further 
decrease in CDD, indicating a shift towards 
more frequent wet spells. At 3˚C, while 
some models show a continued decrease 
in CDD, others indicate a significant 
increase in CDD, implying potential risks of 
prolonged wet periods and associated 
flood events. 

• These findings underscore the critical need 
for adaptive water resource management 
strategies in the Rapti River Basin. The 
projected changes in extreme precipitation 
events, including increased frequency and 
intensity of both droughts and floods,                    
pose significant challenges to                
agriculture, infrastructure, and livelihoods 
in the region. 
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This research emphasizes the importance of 
continuous monitoring and assessment of 
precipitation trends using advanced climate 
models and indices. Policymakers and 
stakeholders must prioritize the development of 
robust adaptation and mitigation strategies to 
address the impacts of climate change on the 
Rapti River Basin, ensuring sustainable water 
resource management and resilience of the local 
communities to future climatic extremes. 
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