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Abstract

In this paper, we have formulated a mathematical model for the transmission dynamics of African Animal
Trypanosomiasis (AAT) by incorporating spraying of the tsetse fly population(vector) and treating the cattle
population (host) as control strategies. It has been shown that the disease free equilibrium point is globally
asymptotically stable and the endemic equilibrium point is locally asymptotically stable. We have also shown
that treatment of the host population reduces significantly infection by AAT as compared to spraying of the
vector population.
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1 Introduction

African Animal Trypanosomiasis (AAT) is a well known disease caused by tsetse fly (genus: Glossina), which
carry and transmit different species of trypanosomes such as Trypanosoma Vivax, T.Congolence, T. brucei, T.
theileri and T. evansi which infect domestic as well as wild animal, see [1, 2]. It is known as sleeping sickness
among humans and nagana among livestock population [3]. The disease has adverse effects both on human and
livestock populations. AAT is a menace in countries of the Sub - Saharan Africa, limiting agricultural production
in these regions causing serious food shortages. It is estimated that more than 50 million cattle are at the risk of
getting the disease. In Kenya for example, AAT is prevalent in Western Kenya, Rift Valley and Coastal regions
causing huge economic losses in the affected regions. This has led to decrease in livestock population especially
in the rural areas [2, 4].

AAT spreads in a cattle population when an infected tsetse fly feeds on the blood of susceptible cattle and when
a susceptible tsetse fly feeds on the blood of an infected cattle. During trypanosome interchange, the fly picks
the trypanosome from the infected cattle and transfers it to another cattle and the cycle continues enhancing
the disease transmission cycle. The cattle-tsetse fly-cattle cycle increases when cattle are introduced in grazing
grounds, water points and other places occupied by Glossina pallidipes (the species that transmit AAT),see [5, 6].

Tsetse fly eradication schemes are pegged on climatic patterns of the region. During hot seasons, tsetse fly
mortality rate is high and as a result, transmission rate is low. However, during cold seasons, the birth rate is
high and the population hit maximum thus increasing the transmission of AAT, see [5, 3, 7]. This information
is used by stakeholders to decide the period of the month to launch tsetse fly eradication campaigns.Tsetse
fly eradication schemes include vector control through Aerial spraying, ground spraying, use of treated cloths
(traps), sterile insect technique and clearing the surrounding environment [8, 2] and injecting a good number of
susceptible cattle with anti-parasitic drugs and use of trypanocidal drugs on infected cattle (such as Diminazene
aceturate and isometamidium chloride).

Due to the destructive nature of AAT, a multi-dimesional approach is applied involving stakeholders. This has
led to the establishment of Pan Africa Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) [9] and
other initiatives by governments.

Many studies have been conducted on the control of AAT. Ng’wena et al. [8] assessed the potential re-emergence
of AAT in both cattle and human population in Lambwe valley amid robust use of vector control measures. They
employed clinical and veterinary approaches by testing blood samples of both animals and humans to check for
traces of trypanosomes in their blood. They found that cases of African Trypanosomiasis are still registered in
both cattle and human populations despite the presence of various control strategies in the Lambwe region.

Muriuki et al. [10] applied time-series aerial photograph interpretation, social survey methods, and a review
of human population to study tsetse fly control and the effects of land use in Lambwe valley. The result of
their study showed a tremendous increase in land use leading to destruction of tsetse fly habitat. The study
found that application of aerial insecticide, bush clearing using herbicides and ground spraying to destroy
tsetse habitat, use of insecticide-treated cloths (targets), have been used as control measures. Kajunguri [1]
developed a multi-host model to study the control of tsetse fly and Trypanosoma brucei rhodesiense (TBR)
in Southeastern Uganda by incorporating insecticide treated cattle as a control strategy of Human African
Trypanosomiasis(HAT) on humans. The study showed that the effective application of insecticides is cost
effective and environmentally friendly. Milligan and Baker [11] modelled the effects of chemoprophylaxis on
cattle and vector control immigration. They observed that in order to achieve disease reduction through
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chemoprophylaxis, mass treatment should be prioritised and the efficacy of the drug should also be taken
into consideration.

Joyce [12] studied optimal control of trypanosomiasis in cattle population by using treatment of infected cattle
as a control strategy. It was observed that treating 75%− 90% of infected cattle is sufficient in controlling AAT.
This study did not consider the combined effect of treatment of host and spraying of the vector in the control of
AAT. Inertia [13] modelled a Multi- Drug Resistance(MDR) during chemotherapy animal african trypasomiasis
in Kwale, Kenya to predict the most effective use of trypanocides in controlling AAT. The study revealed that
treatment of cattle with a combination of two trypanocides was the most optimal treatment strategy to restrict
development of MDR to AAT.

Most studies on control of AAT have used clinical and veterinary approaches relying heavily on the outcome of
the experiments and focussing on the treatment of cattle. In this study, we have formulated a mathematical
model of AAT transmission, incorporating treatment of cattle as well as spraying of the vector population using
insecticides in order to determine the combined effect of spraying the vector and treatment of cattle on the
control of AAT.

2 Model Formulation

In this study, we formulate and analyze a host and vector mathematical model describing the transmission of
Animal African Trypanosomiasis in cattle. The total cattle population at any time t denoted by Nc(t) is divided
into susceptible cattle, Sc(t), Treated cattle, Ec(t), Infectious cattle, Ic(t) and Recovered cattle, Rc(t).

The tsetse fly population at any time t denoted by Nv(t) is divided into susceptible tsetse fly, Sv(t), sprayed
tsetse fly, Ev(t) and infectious tsetse fly, Iv(t).

The cattle population is determined by cattle natural birth rate λ. The cattle population is then partitioned
into those kept under treatment with Trypanocides and those under no treatment. The proportion of cattle
population under treatment is α. Thus, 1 − α is the proportion of cattle population under no treatment. The
recruitment into the susceptible class is at the rate of (1−α)λ while recruitment into the treated class is at the
rate of αλ. The susceptible cattle population can transit to the treated class at the rate of τ . The treatment
can either be successful, in which case the cattle develops immunity against Trypanosomes or the treatment can
fail, in which case the cattle can be infected. The failure rate of treatment is given by σ. The treated cattle
transit to the infected compartment at the rate of σβ, where β is the force of infection in cattle given by β = ηp
in which η is the average biting rate of tsetse fly and p is the transmission rate of infection from tsetse fly to
cattle. The susceptible cattle transit to the infected compartment at the rate β. The infected cattle can recover
from the disease after treatment at the rate of ω. The recovered cattle loses immunity and become susceptible
at the rate of γ.

The vector population is replenished at the rate of π. The tsetse fly population is then partitioned into those
being sprayed with insecticide and those that are not sprayed. The proportion of the tsetse fly population being
sprayed is κ. Thus, recruitment into the susceptible tsetse fly population is (1 − κ)π and recruitment into the
sprayed tsetse fly population is κπ. The susceptible tsetse fly population are sprayed with insecticide at the rate
of ϑ. The spraying can either be successful in which case the tsetse fly die due to spraying at the rate of ξ or the
spraying can fail in which case the tsetse fly can become infectious. The force of infection in tsetse fly is given
by ϕ = ηρ where ρ is the transmission rate of infection from cattle to tsetse fly. The rate of spraying tsetse fly
population fails at the rate of ε. The sprayed tsetse fly population transit to the infectious compartment at the
rate of εϕ. The cattle and the vector are reduced by natural death rates of µ and ν respectively. The infected
cattle also suffer an additional death rate of δ due to the disease. The Table 1 gives a summary of the variables
and parameters of the model.
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Table 1. A table showing a list of variables and parameters defined and their corresponding
meanings

Variable/Parameter Description

Sc Susceptible cattle.
Ec Population of cattle kept on drugs .
Ic Infectious cattle population
Rc Removed cattle population due to treatment.
Sv Susceptible vector population .
Ev Population of Vector kept under control through spraying
Iv Infectious tsetse flies.
Nc Cattle total population.
Nv Tsetse total population.
µ Natural death rate of cattle.
ν Natural death rate of tsetse fly
λ Rate at which cattle population are replenished.
π Rate at which vector population are replenished.
ξ Tsetse fly death rate due to spraying.
ε Failure rate of spraying
β Force of infection in Cattle.
δ Disease-induced death rate in cattle.
ϕ Force of infection in tsetse fly
γ Rate at which recovered cattle transit to susceptible
α Proportion of cattle kept under treatment with Trypanocides.
ϑ rate of spraying susceptible tsetse fly.
p Transmission rate of infection from cattle to tsetse fly.
ρ Transmission rate of infection from tsetse fly to cattle
η Average biting rate of tsetse fly.
τ Rate of treating susceptible cattle with anti-parasitic drugs.
ω Recovery rate of infected cattle.
κ Proportion of tsetse fly kept under spraying.
σ Failure rate of treatment

The data used in this study are estimated and some taken from existing literature. The following assumptions
are made:

1. State variables and parameters of the model are positive real values

2. There is no AAT related mortalities in tsetse fly, however, tsetse fly can die as a result of a natural cause
and spraying

3. The recruitment rates are limited to only births in both cattle and tsetse fly populations, making all
newborns susceptible to the disease.

4. No transmission of the disease by other biting flies except tsetse fly, hence the transfer of Trypanosomes
is done by only a single species of the tsetse fly and assumed to be the one causing infection

5. No mortalities arise from other infectious diseases among the susceptible cattle population

6. There is a constant population for both the host and the vector

7. Tsetse fly cannot recover from the disease and infected tsetse fly remain infectious throughout the rest of
its life.

The following figure gives the schematic diagram of the model.
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Fig. 1. Compartmental diagram showing cattle and vector populations together with AAT
dynamics and the transition between compartments. Solid lines indicate the movement of cattle
and vector from one compartment to another while the dashed lines indicate infection pathways

The governing equation from the flow chart in Fig. 1 is given by;

dSc
dt

= (1− α)λ− (βIv + b1)Sc + γRc,

dEc
dt

= αλ+ τSc − b2Ec,

dIc
dt

= βIvSc + σβEc − b3Ic,

dRc
dt

= ωIc − b4Rc,

dSv
dt

= (1− κ)π − (ϕIc + b5)Sv, (2.1)

dEv
dt

= κπ + ϑSv − b6Ev,

dIv
dt

= ϕIcSv + εϕEv − νIv

Where b1 = µ+ τ, b2 = σβ + µ, b3 = µ+ δ + ω, b4 = γ + µ, b5 = ϑ+ ν, b6 = εϕ+ ξ + ν

System (2.1) is appended with the initial conditions

Sc(0) ≥ 0, Ec(0) ≥ 0, Ic(0) ≥ 0, Rc(0) ≥ 0, Sv(0) ≥ 0, Ev(0) ≥ 0, Iv(0) ≥ 0 (2.2)

Adding all equations in (2.1), we obtain;

dNc
dt

= λ− δIc − µNc and
dNv
dt

= π − νNv − ξEv (2.3)
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Where, Nc = Sc + Ec + Ic +Rc and Nv = Sv + Ev + Iv

3 Basic Properties of the Model

3.1 Positivity and boundedness of the solutions

In this section, we shall show that the solutions of system (2.1) are positive and bounded.

Theorem 3.1. Suppose that conditions in (2.2) hold, then the solution of system (2.1) will remain non-negative
at all time t.

Proof. From the first equation in system (2.1), we have

dSc
dt
≥ −(βIv + b1)Sc

Separating the variables and integrating, we obtain

Sc(t) = Sc(0)e−
∫ t
0 (βIv(s)+b1)ds ≥ 0 ∀t > 0 (3.1)

Similarly, it can easily be shown that Ec(t) ≥ 0, Ic(t) ≥ 0, Rc(t) ≥ 0, Sv(t) ≥ 0, Ev(t) ≥ 0, Iv(t) ≥ 0. Thus, the
solutions remain non-negative for all t ≥ 0. �

Theorem 3.2. The set Ω = {(Sc, Ec, Ic, Rc, Sv, Ev, Iv) ∈ <7
+ : Nc ≤ λ

µ
, Nv ≤ π

ν
} is positively invariant.

Proof. Let Sc(t), Ec(t), Ic(t), Rc(t), Sv(t), Ev(t), Iv(t) be solutions of system (2.1) satisfying conditions in (2.2).
Then, from (2.3), we have that

dNc(t)

dt
≤ λ− µNc and

dNv(t)

dt
≤ π − νNv

from which we obtain

Nc(t) ≤
λ

µ
+

(
Nc(0)− λ

µ

)
e−µt and

Nv(t) ≤ π

ν
+
(
Nv(0)− π

ν

)
e−νt (3.2)

It follows that

lim sup
t→∞

Nc ≤
λ

µ
and lim sup

t→∞
Nv ≤

π

ν

Hence, Nc and Nv are bounded and all feasible solution sets of the system approach or stay in Ω. The region Ω
is therefore positively invariant. �

3.2 Model equilibria and stability analysis

The computation of the model equilibria, the basic reproduction number Reff and the stability analysis of the
equilibria points are done in this section.

3.2.1 Disease-free equilibrium(DFE) point

Equating the right hand side of (2.1) to zero with Ic = Iv = 0 we obtain the DFE point E0 as

E0 = (S0
c , E

0
c , I

0
c , R

0
c , S

0
v , E

0
v , I

0
v )

=

(
(1− α)λ

b1
,
αλ+ τS0

c

b2
, 0, 0,

(1− κ)π

b5
,
κπ + ϑS0

v

b6
, 0

)
(3.3)
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3.2.2 Basic reproduction number

The basic reproduction number, R0 is an essential epidemiological parameter defined as the number of secondary
infections caused by one infected host or vector in a population where everyone is susceptible [14]. Using the
method in [14], the effective reproduction number, Reff , is given by.

Reff =

√(
βS0

c

b3

)(
ϕS0

v

ν

)
, (3.4)

where S0
c and S0

v are as given in equation (3.3).

4 Stability Analysis of Equilibria

4.1 Stability of the disease free equilibrium (DFE) point E0

In this section, we analyse the local and global stability of the DFE point E0 for our model.

Theorem 4.1. The DFE point E0 for the system in (2.1) is locally asymptotically stable if Reff < 1 and if
βϕb4S

0
cS

0
v > γνω

Proof. We begin by finding the Jacobian matrix, J(E0) of the system at the DFE point E0

J(E0) =



−b1 0 0 γ 0 0 −βS0
c

τ −b2 0 0 0 0 0
0 σβ −b3 0 0 0 βS0

c

0 0 ω −b4 0 0 0
0 0 −ϕS0

v 0 −b5 0 0
0 0 0 0 ϑ −b6 0
0 0 ϕS0

v 0 0 εϕ −ν



The eigenvalues of J(E0) are obtained using the characteristic equation

det(J(E0)− zI) = 0

where z is a spectral parameter.

The Characteristic equation yields;

z7 + a6z
6 + a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 = 0 (4.1)
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Where

a6 = b1 + b2 + b3 + b4 + b5 + b6 + ν,

a5 = b1(b2 + b3 + b4 + b5 + b6 + ν) + b2(b3 + b4 + b5 + b6 + ν) +

b3(b4 + b5 + b6) + b4(b5 + b6 + ν) + b5(b6 + ν) + b6ν + b3ν(1−R2
eff )

a4 = b3ν(b1 + b2 + b4 + b5 + b6)(1−R2
eff ) + b3(b1 + b2)(b4 + b5 + b6) +

b4(b1 + b2)(b5 + b6 + ν) + b5(b1 + b2 + b4)(b6 + ν) + νb6(b1 + b2 + b4 + b5)

+b1b2(b3 + b4 + b5 + b6 + ν) + b3b4(b5 + b6) + b3b5b6

a3 = νb3[b1(b2 + b4 + b5 + b6) + b2(b4 + b5 + b6) + b4(b5 + b6) + b5b6][1−R2
eff ]

+σβτ(βϕS0
cS

0
v − γω) + βϕ2εϑS0

cS
0
v + b5(b6 + ν)(b1b2 + b1b4 + b2b4) +

b3b4(b5 + b6)(b1 + b2) + b3b5b6(b1 + b2) + νb6(b1 + b2)(b4 + b5) +

b1b2b3(b4 + b5 + b6) + b1b2b4(b5 + b6 + ν) + νb1b2b6 + b4b5b6(b3 + ν)

a2 = νb3[b1b2(b4 + b5 + b6) + b4(b1 + b2)(b5 + b6) + b5b6(b1 + b2 + b4)][1−R2
eff ]

+b1b2b4(b3 + ν)(b5 + b6) + b1b2b5b6(b3 + b4) + b3b4b5b6(b1 + b2) +

νb1b5b6(b2 + b4) + νb2b4b5b6 + βϕ2εϑS0
cS

0
v(b1 + b2 + b4) +

τσβ[(b5 + b6)(βϕS0
cS

0
v − γω) + (βϕb4S

0
cS

0
v − γνω)]

a1 = νb3[b1b2b4(b5 + b6) + b1b5b6(b2 + b4) + b2b4b5b6][1−R2
eff ] +

b1b2b4b5b6(b3 + ν) + βϕ2εϑS0
cS

0
vb4(b1 + b2) + βϕ2εϑµS0

cS
0
v(b2 + τ)

+τσβ(βϕb4S
0
cS

0
v − γνω)(b5 + b6) + τσβb5b6(βϕS0

cS
0
v − γω)

a0 = νb1b2b3b4b5b6[1−R2
eff ] + βϕ2εϑµS0

cS
0
vb4(b2 + τ) + τσβb5b6(βϕb4S

0
cS

0
v − γνω)

Clearly, the coefficients a0, a1, . . . , a6 are all positive provided Reff < 1 and βϕb4S
0
cS

0
v > γνω. By the Descartes’

Rule of signs, all the roots of equation (4.1) have negative real parts. Therefore, the DFE point E0 is stable
provided Reff < 1 and βϕb4S

0
cS

0
v > γνω. �

4.2 Global stability of DFE

We study the global stability of the DFE point using the Lyapunov function approach for host-vector models as
used in [15]

Theorem 4.2. The DFE point E0 is globally asymptotically stable (g.a.s) in Ω if Reff ≤ 1 and β = ϕ = 0

Proof. To establish the global stability of the DFE point E0, we construct the following Lyapunov function

V (t) = A1(Sc − S0
c lnSc) +A2(Ec − E0

c lnEc) +A3Ic +A4Rc +A5(Sv − S0
v lnSv)

+A6(Ev − E0
v lnEv) +A7Iv (4.2)

where Ai, i = 1, 2, . . . 7 are some positive constants to be chosen later.

Calculating the time derivative along the solutions of (2.1), we obtain

V ′(t) = A1

(
Sc − S0

c

Sc

)
S′c +A2

(
Ec − E0

c

Ec

)
E′c +A3I

′
c +A4R

′
c +A5

(
Sv − S0

v

Sv

)
S′v

+A6

(
Ev − E0

v

Ev

)
E′v +A7I

′
v (4.3)

Using
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S0
c =

(1− α)λ

b1
, E0

c =
αλ+ τS0

c

b2
, S0
v =

(1− κ)π

b5
and E0

v =
κπ + ϑS0

v

b6

in (4.3), we get

V ′(t) = −A1b1

(
(Sc − S0

c )2

Sc

)
−A2b2

(
(Ec − E0

c )2

Ec

)
−A5b5

(
(Sv − S0

v)2

Sv

)
−A6b6

(
(Ev − E0

v)2

Ev

)
−A4b4Rc − νAtIv − ϕA5(Sv − S0

v)Ic +

τA2Sc

(
1− S0

c

Sc

)(
1− E0

c

Ec

)
+ ϑA6Sv

(
1− S0

v

Sv

)(
1− E0

v

Ev

)
+

ϕA7(IcSv + εEv) + βA3(IvSc + σEc) + (ωA4 −A3b3)Ic (4.4)

Let A1 = A2 = A5 = A6 = A7 = 1, A3 = ων,A4 = βϕS0
cS

0
v . Equation (4.4) reduces to

V ′(t) = −A1b1

(
(Sc − S0

c )2

Sc

)
−A2b2

(
(Ec − E0

c )2

Ec

)
−A5b5

(
(Sv − S0

v)2

Sv

)
−A6b6

(
(Ev − E0

v)2

Ev

)
−A4b4Rc − νAtIv − ϕA5(Sv − S0

v)Ic +

τA2Sc

(
1− S0

c

Sc

)(
1− E0

c

Ec

)
+ ϑA6Sv

(
1− S0

v

Sv

)(
1− E0

v

Ev

)
+

ϕA7(IcSv + εEv) + βA3(IvSc + σEc) + ωνb3(R2
eff − 1)Ic (4.5)

Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we have that τA2Sc
(

1− S0
c
Sc

)(
1− E0

c
Ec

)
≤ 0

and A6Sv
(

1− S0
v
Sv

)(
1− E0

v
Ev

)
≤ 0

Thus, V ′(t) ≤ 0 provided R2
eff ≤ 1 and β = ϕ = 0. Note that V ′(t) = 0 holds only for Sc = S0

c , Sv =
S0
v , Ec = E0

c , Ev = E0
v , Ic = Rc = Iv = 0 and β = ϕ = 0. Therefore, the largest compact invariant set in

{(Sc, Ec, Ic, Rc, Sv, Ev, Iv) ∈ Ω|V ′(t) = 0} is the singleton set {E0}. Hence, Lasalle’s Invariant Principle [16]
then implies that E0 is globally asymptotically stable in Ω. �

4.3 Endemic equilibrium (EE) point

The endemic equilibrium describes a situation where the disease persists in the cattle population. This is the
case where there exists a positive endemic equilibrium point E∗. The following theorem gives conditions for the
existence of a unique positive endemic equilibrium point for the system in equation (2.1).

Theorem 4.3. There exists a unique positive endemic equilibrium point E∗ if Reff ≥ 1, βγωc2 > 2b3c4 and
βϕ(1− α)λ > b3b5.

Proof. Let E∗ = (S∗c , E
∗
c , I
∗
c , R

∗
c , S

∗
v , E

∗
v , I
∗
v ) be the endemic equilibrium point of system (2.1). This point is

obtained by equating the right hand side of system (2.1) to zero and solving for S∗c , E
∗
c , I
∗
c , R

∗
c , S

∗
v , E

∗
v , and I∗v .

We obtain
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S∗c =
νγωϕb6I

∗2
c + ν[b4(1− α)λϕ+ γωb5]b6I

∗
c + ν(1− α)λb4b5b6

c3I∗c + c4

E∗c =
1

b2(c3I∗c + c4)

{
νϕτγωI∗2c +

[αλβb4c1 + αλϕb1b4b6 + (1− α)λτϕ2νb4b6 + ντγωb5b6]I∗c

+αλβb4c1 + νb4b5b6[αλb1 + τϕ(1− α)λ]}

R∗c =
ω

b4
I∗c , S∗v =

(1− κ)π

ϕI∗c + b5
, E∗v =

κπb5 + ϑ(1− κ)π + κπϕI∗c
b6(ϕI∗c + b5)

I∗v =
c1I
∗
c + c2

νb6(ϕI∗c + b5)

where

c1 = ϕ(1− κ)πb6 + κπεϕ2, c2 = κπεϕb5 + ϑ(1− κ)πεϕ

c3 = βb4c1 + νϕb1b4b6, c4 = βb4c2 + νb1b4b5b6

Using these expressions in

βI∗vS
∗
c + σβE∗c − b3I∗c = 0,

we obtain after a lengthy computation

d4I
∗4
c + d3I

∗3
c + d2I

∗2
c + d1I

∗
c + d0 = 0 (4.6)

where

d4 = −νϕb6c3 {βb2c1[µb3 + (µ+ δ)γ]+

νϕb6[b1b2(µb3 + (µ+ δ)γ) + µγω(b1 + σβ)]}
d3 = βνγϕb2b6 + b2c3[β(1− α)λϕb4c1 + b5(βγωc1 − b3c3)] +

σβνb6[ϕ2ντγωb6c4 + νϕτγωb5b6c3] + νϕb2b6c4[βγωc1 − 2b3c3] +

σβνϕb6c3[αλβb4c1 + νϕb4b6(αλb1 + τϕ(1− α)λ) + ντγωb5b6]

d2 = ν(1− α)λβb2b4b5b6c1c3 + βϕb4c2[νγωβb2b6c2 + νγωb1b2b5b
2
6 − b3] +

ν2ϕτγωσb5b
2
6c4 + νσβϕb6c3[αλβb4c2 + νb4b5b6(αλb1 + τϕ(1− α)λ)] +

νσβb6[αλb4c1 + νϕb5b6(αλb1 + τϕ(1− α)λ) + ντγωb5b6][ϕc4 + b5c3] +

β[(1− α)λϕ3κπεb4 + γωb5c1] + ν2ϕb1b2b3b4b5b
2
6c4[R2

eff − 1] +

νβ(1− α)λϕb2b4b6c2c3 + νb2b5b6c3(βγωc2 − 2b3c4)

d1 = σβb5c4{αλβb4c1 + νϕb4b6[αλb1 + τϕ(1− α)λ] + ντγωb5b6}+

σβ[ϕc4 + b5c3][αλβb4c2 + νb4b5b6(αλb1 + τϕ(1− α)λ)] +

νβϕ(1− α)λb2b4b6[ϕκπεb5 + c2c4] + νβγωb2b5b6c2c4 +

νb2b4b6c2c4[βϕ(1− α)λ− b3b5] + ν2b1b2b3b4b
2
5b

2
6c4[R2

eff − 1]

d0 = γ(1− α)λb4b5b6c2c4 + b5c4[αλβb4c2 + νb4b5b6(αλb1 + τϕ(1− α)λ)]

Clearly d0 > 0 and d4 < 0. d1 > 0 provided Reff ≥ 1 and βϕ(1 − α)λ > b3b5 and d2 > 0 provided Reff ≥ 1
and βγωc2 > 2b3c4. Therefore, by the Descarte’s Rule of signs, a unique positive endemic equilibrium point E∗

exists irrespective of the sign of d3 provided Reff ≥ 1, βϕ(1− α)λ > b3b5 and βγωc2 > 2b3c4. �

70



Akello et al.; Asian Res. J. Math., vol. 20, no. 9, pp. 61-75, 2024; Article no.ARJOM.121077

4.4 Local stability of the endemic equilibrium (EE)

Theorem 4.4. The endemic equilibrium point E∗ is locally asymptotically stable provided νb3 ≥ βϕS∗cS∗v .

Proof. The Jacobian matrix of model system (2.1) at the point E∗ is given by

J(E∗) =



−βI∗v − b1 0 0 γ 0 0 −βS∗c
τ −b2 0 0 0 0 0
βI∗v σβ −b3 0 0 0 βS∗c
0 0 ω −b4 0 0 0
0 0 −ϕS∗v 0 −ϕI∗c − b5 0 0
0 0 0 0 ϑ −b6 0
0 0 ϕS∗v 0 ϕI∗c εϕ −ν



The characteristic polynomial of matrix J(E∗) is given by

PJ(E∗)(w) = det(J(E∗)− wI7)

= w7 + a6w
6 + a5w

5 + a4w
4 + a3w

3 + a2w
2 + a1w + a0

If all the coefficients of the PJ(E∗)(w) are positive, then by the Descartes Rule of signs, all the roots of PJ(E∗)(w)
will have negative real parts.

By a result in [17], all the coefficients of PJ(E∗)(w) are positive provided the independent term a0 is positive. It
remains to show that the independent term a0 is positive.

The independent term a0 can be obtained using the formula a0 = (−1)ndet(J(E∗)). Thus, we have

a0 = νϕb6I
∗
c {σβτ [µb3 + (µ+ δ)γ] + µ(σβ + b1)b3b4}+ µϕσβ2τb5b6S

∗
cS
∗
v +

νβb2b6I
∗
v [ϕI∗c + b5][µb3 + (µ+ δ)γ] + µβϕ2εϑ(σβ + b1)b4S

∗
cS
∗
v +

(µ+ δ)νσβτγb5b6 + µb5b6[τb2 + b2b4 + τγ][νb3 − βϕS∗cS∗v ]

The independent term a0 is positive provided νb3 ≥ βϕS∗cS
∗
v . Therefore, all the eigenvalues of the matrix

J(E∗) have negative real parts provided νb3 ≥ βϕS∗cS
∗
v . Thus, the endemic equilibrium point E∗ is locally

asymptotically stable provided νb3 ≥ βϕS∗cS∗v . �

5 Numerical Simulation

To simulate the model, some parameter values were obtained from [18, 1, 19] and others were estimated.
The parameter values are as given in Table 2. The model in equation (2.1) is simulated using deSolve in R-
programming language for different treatment of cattle and spraying of tsetse fly levels with the initial conditions
Sc = 100, Ec = 10, Ic = 5, Rc = 0, Sv = 1000, Ev = 15, Iv = 10.

6 Discussion

The simulation was carried out to investigate combined effect of treatment of cattle and spraying of the tsetse
fly on the control of AAT spread in Cattle. Varying rate of treatment of cattle (τ) from 50%−90% while holding
rate of spraying of tsetse fly at 75% , the simulation results are as shown in Fig. 2.
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Table 2. Numerical values for the parameters of the AAT model incorporating treatment of
cattle and spraying of tsetse fly

Symbol Description Value Unit Source

µ Natural mortality rate of cattle 1
30×365

days−1 Estimated

ν Natural mortality rate of vector 1
30

days−1 [1]

δ Disease-induced death rate in cattle 0.006 days−1 [1]

ρ Transmission rate of infection
from tsetse fly to cattle 0.62 days−1 [1]

p Transmission rate of infection
from cattle to tsetse fly 0.065 days−1 [1]

η Average biting rate of tsetse fly 0.0714 days−1 estimated

β = η · ρ Infection force in Cattle 0.0443 days−1 estimated

ϕ = η · p Infection force in vector 0.0046 days−1 estimated

π Rate at which vector population
are replenished 0.07 days−1 [18]

λ Rate at which cattle population
are replenished 1

15×365
days−1 [19]

γ Rate at which recovered cattle
reintegrate with the susceptible

cattle population 1
50

days−1 [19]

α Proportion of cattle kept under
treatment with Trypanocides 0.5 days−1 Estimated

τ Rate of treating susceptible cattle
using anti-parasitic drugs 0.6 days−1 Varying

ϑ Rate of spraying susceptible vector 0.75 days−1 Varying

κ Proportion of tsetse fly
kept under spraying 0.75 days−1 Estimated

σ Failure rate of treatment 0.02 days−1 Estimated

ω Recovery rate of infected cattle 1
10

day−1 estimated

ε Failure rate of spraying 0.07 days−1 estimated

ξ Tsetse death rate due to spraying 0.78 days−1 [1]

Fig. 2. Treatment at different levels with rate of spraying at 75%
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Fig. 3. Spraying at different levels with rate of treatment at 70%

Varying rate of spraying of tsetse fly (ϑ) from 75%− 95% while holding rate of treatment of cattle at 70% , the
simulation results are as shown in Fig. 3.

The results shown in Fig. 2 show that treating cattle at different levels while keeping spraying of tsetse fly
constant help reduce the number of infected cattle significantly. On the other hand, spraying tsetse fly at
different levels while holding treatment rate of cattle constant has insignificant reduction on the number of
infected cattle as shown in Fig. 3. From Fig. 2 graph and Fig. 3, it can be seen that the best strategy for
controlling AAT is treating cattle at different rates while holding rate of spraying tsetse fly constant at 75%.

7 Conclusion

In this study, we formulated a mathematical model of AAT transmission, incorporating treatment of cattle as
well as spraying of the vector population using insecticides in order to determine the combined effect of spraying
the vector and treatment of cattle on the control of AAT. We analyzed both the disease free and endemic
equilibrium. The results of the analysis of the DFE showed that the model is both locally and globally stable
when Reff < 1 and βϕb4S

0
cS

0
v > γνω. The epidemiological interpretation of this is that AAT can be eradicated

from the cattle population by using the control measures, provided that Reff < 1 and βϕb4S
0
cS

0
v > γνω.

However, from the proof of the stability of the endemic equilibrium, we showed that when νb3 ≥ βϕS∗cS∗v , then
the endemic equilibrium is also asymptotically stable. The numerical simulations of the control measures were
done and demonstrate that treating cattle at different levels while keeping spraying of tsetse fly constant help
reduce the number of infected cattle significantly. On the other hand, spraying tsetse fly at different levels while
holding treatment rate of cattle constant has insignificant reduction on the number of infected cattle. Thus, it
can be seen that the best strategy for controlling AAT is treating cattle at different rates while holding rate of
spraying tsetse fly constant at 75%.
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