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ABSTRACT 
 

This study investigates the volatility dynamics of major global stock indexes, including the FTSE 
100, Hang Seng Index, NIKKEI 225, and S&P 500, using a range of Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) models. The analysis spans a comprehensive 20-year 
period from January 1, 2004, to December 31, 2023, encompassing diverse market conditions such 
as bull and bear markets, the 2008 financial crisis, and the COVID-19 pandemic. The methodology 
includes preprocessing steps such as calculating daily log returns, performing descriptive statistics, 
and conducting stationarity and ARCH effect tests to ensure data suitability for volatility modelling. 
The study evaluates several GARCH models, including GARCH, EGARCH, NGARCH, APARCH, 
GJR-GARCH, and TGARCH, to forecast volatility and address both symmetric and asymmetric 
effects. The TGARCH model exhibits strong performance in capturing leverage effects and 
asymmetries, particularly for the FTSE 100 and Hang Seng Index. The APARCH model performs 
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well for the S&P 500, demonstrating sensitivity to past shocks. Overall, the findings underscore the 
importance of advanced GARCH models in accurately predicting volatility in global financial 
markets, highlighting the TGARCH model's effectiveness in addressing asymmetries and providing 
insights into selecting appropriate models for enhanced financial analysis and risk management. 
 

 

Keywords: GARCH models; global stock indexes; leverage effect; symmetry & asymmetry effects; 
predictability and volatility. 

 

1. INTRODUCTION 
 

The ability to forecast the volatility of these 
global stock indexes is of paramount importance 
for various stakeholders, including institutional 
investors, portfolio managers, and policymakers. 
GARCH models, introduced by Bollerslev [1], 
have become the cornerstone of volatility 
modelling due to their ability to model time-
varying volatility and capture the persistence and 
clustering of volatility in financial time series. The 
basic GARCH (1,1) model posits that the current 
conditional variance of a time series is a function 
of past squared observations and past 
conditional variances. This model effectively 
captures the "volatility clustering" phenomenon, 
where periods of high volatility tend to be 
followed by high volatility, and periods of low 
volatility tend to be followed by low volatility. 
Despite its simplicity, the GARCH (1,1) model 
has proven to be remarkably effective in a wide 
range of applications. 
 

Over the years, various extensions of the 
GARCH model have been developed to address 
its limitations and enhance its forecasting 
performance. The Exponential GARCH 
(EGARCH) model, proposed by Nelson [2], 
accounts for asymmetries in the impact of 
positive and negative shocks on volatility. This 
feature is particularly relevant in financial 
markets, where negative news often has a more 
significant impact on volatility than positive news 
of the same magnitude. Glosten, Jagannathan, 
and Runkle [3] developed the GJR model to 
capture the leverage effect, where negative 
shocks have a greater impact on volatility than 
positive shocks. Bera and Higgins [4] proposed 
the NGARCH model, which introduces a more 
general functional form for the conditional 
variance, allowing for more complex dynamics in 
volatility. Ding, Granger, and Engle [5] introduced 
this model to account for asymmetries and 
varying powers in the volatility process, offering a 
more flexible structure for modelling 
heteroskedasticity. 
 

Zakoian [6] proposed the TGARCH model, which 
incorporates threshold effects to model the 

different responses of volatility to positive and 
negative innovations. Bollerslev and Ghysels [1] 
developed the PGARCH model to address the 
periodicity observed in some financial time 
series, allowing for seasonal effects in volatility 
modelling. The Component GARCH (CGARCH) 
model, developed by Engle and Lee [7], 
decomposes volatility into permanent and 
transitory components, providing insights into the 
long-term and short-term factors driving market 
volatility. This decomposition is particularly useful 
for distinguishing between structural changes in 
the market and temporary fluctuations. The 
GARCH-MIDAS model, proposed by Engle, 
Ghysels, and Sohn [8], integrates mixed data 
sampling to incorporate macroeconomic 
variables and other low-frequency information 
into the volatility forecasting process. This 
approach enhances the predictive power of 
GARCH models by leveraging additional 
information beyond daily financial returns. 
 
The global financial markets are inherently 
volatile, characterized by significant fluctuations 
in asset prices driven by myriad factors ranging 
from economic indicators and geopolitical events 
to investor sentiment and market speculation. 
Accurate forecasting of this volatility is crucial for 
risk management, investment strategies, and 
policy formulation. Among the numerous 
econometric models developed to analyze and 
predict market volatility, the Generalized 
Autoregressive Conditional Heteroskedasticity 
(GARCH) of models has gained prominence due 
to its flexibility and robustness in capturing the 
dynamic nature of financial time series. Global 
stock indexes serve as benchmarks for the 
performance of equity markets and are crucial 
indicators of economic health and investor 
sentiment. 
 
Four major indexes – FTSE 100, Hang Seng, 
NIKKEI 225, and S&P 500 – represent diverse 
geographical regions and provide a 
comprehensive view of global market dynamics. 
The Financial Times Stock Exchange 100 Index, 
commonly known as the FTSE 100, comprises 
the 100 largest companies listed on the London 
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Stock Exchange. It is a key indicator of the 
performance of major British companies and 
their exposure to international markets. The 
Hang Seng Index is a major stock market index 
in Hong Kong, representing the largest and most 
liquid companies listed on the Hong Kong Stock 
Exchange. It reflects the economic and financial 
environment of Hong Kong and its 
interconnectedness with mainland China. The 
Nikkei 225, also known as the Nikkei Stock 
Average, is a stock market index for the Tokyo 
Stock Exchange. It includes 225 of the largest 
publicly traded companies in Japan, providing 
insights into the Japanese economy and its 
sensitivity to global economic changes. The 
Standard & Poor's 500 Index, commonly known 
as the S&P 500, includes 500 of the largest 
publicly traded companies in the United States. It 
is widely regarded as a barometer of the U.S. 
stock market and, by extension, the global 
economy. 
 
This empirical study aims to evaluate the 
forecasting ability of various GARCH models in 
predicting the volatility of these major global 
stock indexes. By comparing the performance of 
different models, including GARCH, EGARCH, 
TGARCH, and other variants, this study seeks to 
identify the most effective approaches for 
volatility forecasting across diverse market 
conditions. Accurate volatility forecasting is 
essential for managing financial risk, optimizing 
investment portfolios, and developing effective 
regulatory policies. By providing a 
comprehensive analysis of the strengths and 
limitations of different GARCH models, this study 
contributes to the literature on volatility modelling 
and offers practical insights for market 
participants. The dynamic nature of global stock 
markets necessitates robust volatility forecasting 
models, and the GARCH of models, with their 
diverse extensions, offers powerful tools for 
capturing the complexities of financial volatility. 
This study endeavours to assess the empirical 
performance of these models in forecasting the 
volatility of key global stock indexes, thereby 
enhancing our understanding of market 
dynamics, and improving decision-making in 
financial markets. 
 

2. LITERATURE REVIEW 
 
The study of financial market volatility has been 
a cornerstone of financial econometrics, 
particularly through the development and 
application of various autoregressive conditional 
heteroskedasticity (ARCH) models. Bollerslev [1] 

pioneered this area by introducing the 
generalized autoregressive conditional 
heteroskedasticity (GARCH) model, extending 
the basic ARCH framework to incorporate past 
conditional variances. This model set the stage 
for a plethora of GARCH-type models that aim to 
capture the complex dynamics of financial time 
series data. Among the early extensions of the 
GARCH model, Nelson [2] introduced the 
exponential GARCH (EGARCH) model, which 
accommodates the asymmetric effects of shocks 
on volatility. The EGARCH model, along with 
others like the GJR model by Glosten et al. [3] 
and the NGARCH model by Bera and Higgins 
[4], have been instrumental in understanding 
financial volatility. These models address the 
need to capture volatility asymmetry, a common 
feature in financial markets where negative 
shocks often have a larger impact on volatility 
than positive ones. 
 
Further advancements include the Asymmetric 
Power GARCH model by Ding et al. [5] and the 
Threshold GARCH model by Zakoian [6], which 
refine the ability to model asymmetries and 
threshold effects in volatility. Bollerslev and 
Ghysels [1] introduced the periodic GARCH 
(PGARCH) model, which accounts for seasonal 
volatility patterns in high-frequency asset returns. 
These models have significantly improved our 
understanding of volatility dynamics, providing 
better tools for risk management and forecasting. 
Empirical studies across different markets and 
time periods have demonstrated the utility of 
these models. For instance, Rossetti et al. [9] 
analysed fixed income market volatility across 11 
countries from 2000 to 2011, finding that 
asymmetric GARCH processes, particularly 
EGARCH, effectively capture volatility influenced 
more by internal macroeconomic events than 
external factors. Similarly, Gupta [10] compared 
symmetric and asymmetric GARCH models in 
forecasting stock market volatility in emerging 
nations, concluding that the EGARCH model 
best captures the asymmetric effects of shocks 
on volatility. Duppati et al. [11] examines the 
ability of intraday data to predict long-term 
memory in volatility for five Asian equity indices, 
using GARCH-based models and realized 
volatility approaches. 
 
Innovative modelling approaches have also been 
explored. Paul et al. [12] introduced a Realized 
GARCH-EVT model for quantile forecasting, 
which generally outperformed traditional models 
in forecasting Value-at-Risk and expected 
shortfall for European stock indices. This 
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highlights the potential of integrating high-
frequency data and extreme value theory in 
volatility modelling. In the context of emerging 
markets, Sharma et al. [13] found that the 
GARCH (1,1) model outperforms non-linear 
models in forecasting volatility for major 
emerging markets, such as China, India, 
Indonesia, Brazil, and Mexico. This indicates that 
while advanced models provide theoretical 
improvements, simpler models like GARCH (1,1) 
can sometimes offer better practical performance 
due to fewer estimation errors. Jiang [14] 
introduces GARCH, E-GARCH, and GJR-
GARCH models to predict the conditional 
variance of returns in five global stock markets 
using normal and student-t distributions for error 
terms. Kumar et al. [15] explored the volatility of 
stock indices from the PIIGS economies using 
wavelet techniques and various GARCH models, 
revealing long-range dependence and support 
for the Taylor effect in volatility proxies. Their 
findings highlight the importance of considering 
both asymmetry and long memory in volatility 
modelling. 
 
Similarly, Manera et al [16] compares the 
forecasting performance of nonlinear GARCH 
models (VS-GARCH, GJR-GARCH, Q-GARCH) 
against the standard GARCH (1,1) model using 
ten European stock price indexes. The results 
show that nonlinear models generally offer better 
forecasts with smaller errors and biases. Lim et 
al. [17] examined Malaysia's stock market 
volatility, finding that symmetric GARCH models 
perform better during normal periods, while 
asymmetric models are more effective during 
crises.  Raji et al. [18] investigated the dynamic 
relationship between the Nigeria-US exchange 
rate and crude oil prices, using various GARCH 
models. Ugurlu et al. [19] evaluated GARCH-
type models for stock market volatility in four 
European emerging countries and Turkey, finding 
persistent volatility shocks and significant 
impacts from old news. 
 
Abdul Manap et al. [20] examined the long 
memory property and asymmetric effects in 
Malaysian equity market volatility, finding that the 
FIAPARCH model effectively captures both 
asymmetry and long memory. Rajvanshi et al. 
[21] compared GARCH, GJR-GARCH, and 
EGARCH models with their implied volatility (IV) 
augmented counterparts, concluding that the 
GARCH IV model excels in predicting volatility. 
Conversely, Ederington et al. [22] determined 
that while the GARCH (1,1) model generally 
outperforms historical and exponentially 

weighted models, a novel non-linear least 
squares model based on absolute return 
deviations provides superior forecast accuracy. 
Similarly, Sharma et al. [23] found that the 
standard GARCH model surpasses more 
advanced GARCH models in forecasting 
accuracy.  Fraz et al. [24] study finds that the 
GARCH-M (1,1) model is the most suitable for 
out-of-sample forecasts. It has the lowest MAE, 
MSE, RMSE, MAPE, Theil's U1, and Theil's U2 
values among all GARCH models studied. 
 
Ghorbel et al. [25],  Akinlaso et al. [26] and 
Ghorbel et al. [27] provided insights into volatility 
spillovers and dynamic conditional correlations 
between different markets. The former study 
highlighted the contagion effect of the 2008 oil 
shock and US financial crisis on GCC and BRIC 
stock markets, while the latter focused on the 
volatility spillover during the COVID-19 
pandemic, revealing strong volatility spikes with 
gold acting as a safe haven. Volatility dynamics 
in specific sectors have also been explored. 
Hassan [28] examined the response of NASDAQ 
clean energy stock returns volatility to external 
energy security elements, finding significant 
impacts from natural gas prices, carbon prices, 
and green information technology stocks. This 
study emphasizes the importance of external 
factors in assessing risks associated with clean 
energy stocks. Bhargava et al. [29] highlights an 
asymmetric spillover effect for the Australian 
dollar and suggests future analysis with MV-
GARCH models and different market 
perspectives. 
 
The utility of GARCH models in risk 
management has been well-documented. 
Walther [30] analysed the conditional volatility of 
Vietnamese stock indices, suggesting that long 
memory GARCH models combined with skewed 
Student’s t-distribution are best for forecasting 
VaR and ES. Similarly, Liu et al. [31] found that 
EGARCH provides the most accurate volatility 
forecasts during the 2008 financial crisis, 
highlighting the effectiveness of GARCH models 
in risk management. Even, Mușetescu et al. [32] 
finds that the EGARCH (1,1) model best 
captures volatility asymmetry, with Brent Crude 
Oil responding negatively to over 90% of market 
shocks. But, AL-Najjar [33] finds symmetric 
ARCH/GARCH models effectively capture 
volatility clustering and leptokurtosis, while 
EGARCH does not support leverage effects.  
Other notable contributions include studies by 
Priya et al. [34] and Aggarwal et al. [35], which 
examined the impact of COVID-19 protocols on 
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sectoral volatility and the day-of-the-week effect 
in the Indian stock market, respectively. These 
studies underscore the importance of 
considering external shocks and market 
inefficiencies in volatility modelling. 
 
Other side, Hentschel [36] introduces a 
parametric type of GARCH models that includes 
both symmetric and asymmetric variants, 
allowing for nested tests of different asymmetries 
and functional forms. Analysis of daily U.S. stock 
return data reveals that standard GARCH 
models are rejected in favour of a model where 
the conditional standard deviation depends on 
the absolute value of past shocks raised to the 
power of 1.5 and past standard deviations. 
Smolović et al. [37] finds that none of the eight 
GARCH models tested passed the Kupiec test at 
a 95% confidence level, though some models 
passed the Christoffersen test at 95%. The 
results highlight challenges in accurately 
capturing volatility clustering and VaR in 
emerging markets. 
 
Finally, works like Wang et al. [38] and Radha et 
al. [39] explore the impact of economic 
uncertainty and forecast short-term interest rates 
using GARCH-based models. These studies 
highlight the relevance of GARCH models in 
capturing the nuances of financial time series 
data and their application in various economic 
contexts. In summary, the evolution of GARCH-
type models has been pivotal in advancing our 
understanding of financial market volatility. From 
the basic GARCH model introduced by 
Bollerslev [1] to sophisticated variants like 
EGARCH, TGARCH, and PGARCH, these 
models have provided powerful tools for 
analysing and forecasting volatility. Empirical 
studies across different markets and time periods 
demonstrate their effectiveness in capturing the 
complex dynamics of financial time series, 
offering valuable insights for risk management, 
investment strategies, and policy-making. 
 

3. METHODOLOGY 
 
The study will use daily closing prices of the 
FTSE 100, Hang Seng, NIKKEI 225, and S&P 
500 indexes. The FTSE 100, Hang Seng Index, 
NIKKEI 225, and S&P 500 were chosen for this 
study due to their representation of major global 
economies—namely, the UK, Hong Kong, Japan, 
and the United States. These indexes are widely 
recognized as key indicators of financial market 
performance in their respective regions. They 
offer a diverse range of economic and market 

environments, from developed Western 
economies to leading Asian markets. This 
diversity ensures a comprehensive analysis of 
volatility dynamics across different economic 
conditions. Additionally, the large market 
capitalizations and global influence of these 
indexes make them particularly relevant for 
studying volatility in a global context. The data 
will be obtained from reliable financial databases 
from Yahoo Finance, covering a period of twenty 
years (01-01-2004 to 31-12-2023) to ensure a 
comprehensive analysis. The time span should 
include various market conditions, such as bull 
and bear markets, 2007/2008 financial crises, 
periods of economic stability and, COVID-19 
effect to capture the full spectrum of volatility 
dynamics. 
 

3.1 Preprocessing 
 
Before applying the GARCH models, the 
collected data will be pre-processed to ensure its 
suitability for analysis. This includes: 
 
3.1.1 Log returns CALCULATION 
 
The daily log returns will be computed from the 
closing prices as they are more stationary and 
suitable for volatility modelling. The log return is 
calculated using the formula: 
 

rt = ln (
𝑝𝑡

𝑝𝑡−1
)                                                 (1) 

 
Where pt and pt-1  are the closing prices at time t 
and t-1 
 
3.1.2 Descriptive statistics 
 
Basic descriptive statistics, including mean, 
standard deviation, skewness, and kurtosis, will 
be calculated to understand the characteristics of 
the log returns. 
 
3.1.3 Stationarity check and 
 
The stationarity of the log returns will be tested 
using the Augmented Dickey-Fuller (ADF) test, 
Augmented Dickey-Fuller Generalized Least 
Squares (ADF-GLS) test and The Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test.  If the ADF 
test and ADF-GLS test statistic is less than the 
critical value at a given confidence level, and the 
p-value is below the chosen significance level, 
can reject the null hypothesis of a unit root, 
suggesting that the series is stationary. The 
KPSS test is designed to test the null hypothesis 
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of stationarity against the alternative hypothesis 
of non-stationarity. It can be applied to time 
series data to determine whether the series is 
stationary around a trend (trend-stationary) or 
around a mean (level-stationary). 

 
3.1.4 ARCH effect 

 
The ARCH-LM (Autoregressive Conditional 
Heteroskedasticity - Lagrange Multiplier) test is a 
statistical test used to detect the presence of 
autoregressive conditional heteroskedasticity 
(ARCH) effects in a time series. This test is 
crucial for identifying whether the variance of the 
residuals from a regression model is dependent 
on past error terms, which is a common 
characteristic of financial time series. The test 
statistic is compared with critical values from the 
chi-squared distribution. If the test statistic 
exceeds the critical value, the null hypothesis of 
no ARCH effects is rejected. 

 
3.1.5 Visual analysis 

 
Time series plots of the log returns will be 
generated to visually inspect the data for 
patterns, anomalies, and ARCH effect. 

 
3.2 Model Specification 
 
The study will employ various GARCH models to 
forecast the volatility of the selected stock 
indexes by using the t distribution. The 
Symmetric and Asymmetric models to be 
considered include, ARCH Model, GARCH 
Model, Taylor/Schwert GARCH Model, EGARCH 
Model, APARCH Model, NGARCH Model, and 
TGARCH Model. 

 
3.2.1 ARCH model 

 
In traditional econometrics, it is often assumed 
that the variance of a random variable remains 
constant over time. However, financial time 
series typically exhibit heteroscedasticity, 
meaning they are stable over the long term but 
show instability in the short term. To account for 
this time-varying volatility, Engle [40] introduced 
the Autoregressive Conditional 
Heteroskedasticity (ARCH) model, which is used 
to model both the mean and variance of time 
series data. The general form of the ARCH 
model is expressed as follows: 
 

yt = ϕ xt + μt                                                 (2) 
 

σt
2 = E(μt

2∣μt-1, μt-2…...) = α0 + α1𝜇𝑡−1
2  +  + 

αp𝜇𝑡−𝑝
2

 = ∑ α𝑖𝜇𝑡−𝑖
2𝑝

𝑖=1                                     (3) 

 
ϕ is a non-zero parameter to be estimated, xt  
represents the independent variable observed at 
time t, and μt  is a random error term, which is 
typically assumed to follow a normal distribution 
in the standard model. The fundamental concept 
of the ARCH model is that the variance of the 
residuals μt at time t depends on the squared 
error terms from previous periods. Specifically, 
the model posits that the variance of the error 
term at time t is a linear function of the squared 
error terms from the previous p periods. 
 
However, the ARCH model assumes that 
positive and negative shocks have the same 
impact on volatility, making it unsuitable for 
analysing series with asymmetric effects. 
 
3.2.2 GARCH model 
 
Bollerslev [1] introduced a significant 
enhancement to the ARCH model, termed the 
GARCH model, which better captures the 
phenomenon of volatility clustering commonly 
observed in financial time series. This approach 
considers the conditional variance as a GARCH 
process to effectively estimate volatility that 
changes over time. The defining equations of the 
model are as follows: 
 

yt = ϕ xt + μt , μ~N(0, σt
2)                           (4) 

 

σt
2  = ω + ∑ α𝑖𝜇𝑡−𝑖

2𝑝
𝑖=1  + ∑ β𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1              (5) 

 

In this model, 𝜇𝑡−𝑖
2   represents the ARCH 

parameter, while 𝜎𝑡−𝑖
2  is the GARCH parameter. 

The coefficients associated with the ARCH and 
GARCH terms are indicated by α and β, 
respectively, and p and q indicate the lag order of 
the model. Therefore, the ARCH model can be 
seen as a specific case within the broader 
GARCH framework. In this study, primarily utilize 
the GARCH (1,1) model, which includes one lag, 
to estimate the sample series. The strength of 
the GARCH model lies in its ability to reflect and 
interpret heteroscedasticity. However, it still falls 
short in capturing asymmetry in financial time 
series. 
 
3.2.3 EGARCH model 
 
In 1991, Nelson introduced the EGARCH model, 
which formulates the variance equation in 
logarithmic form. This approach simplifies the 
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estimation of the parameters for σt
2, as it 

removes the need for any constraints on the 
model's parameters. 
 

ln σt
2  = ω + ∑ 𝛼𝑖|

𝑢𝑡−𝑖

𝜎𝑡−𝑖
 − 𝐸(

𝑢𝑡−𝑖

𝜎𝑡−𝑖
)|

𝑝
𝑖=1  + 

∑ 𝛽𝑗ln (𝜎𝑡−𝑗
2 )

𝑞
𝑗=1  + ∑ 𝛾𝑘

𝑟
𝑘=1  

𝑢𝑡−𝑘

𝜎𝑡−𝑘
                  (6) 

 
The variance σt

2 remains positive irrespective of 
the sign of the coefficients on the right side of 
Equation. Unlike the GARCH model, the 
logarithmic conditional variance on the left side 
permits negative coefficients, enhancing the 
flexibility of the solution process. The presence 
of asymmetrical terms γ ≠ 0 in the EGARCH 
model's equation means that their impact is 
measured in an exponential form rather than a 
quadratic one. 
 
3.2.4 APARCH model 
 
Taylor [41] and Schwert [42] introduced a variant 
of the GARCH model designed to model the 
standard deviation rather than the variance. This 
modification aims to mitigate the influence of 
large shocks on the conditional variance. 
Following this, Ding et al. [5] advanced the 
model further by developing the Asymmetric 
Power Autoregressive Conditional 
Heteroscedasticity (APARCH) model. The 
APARCH model generalizes the standard 
deviation GARCH approach by incorporating 
asymmetric effects and varying powers, as 
specified in the following variance equation: 

 
σt

δ =  ω  +  ∑ 𝛽𝑗  𝜎𝑡−𝑗
𝛿𝑞

𝑗=1   +  ∑ 𝛼𝑖(|𝑢𝑡−𝑖|  −
𝑝
𝑖=1

𝛾𝑖  𝑢𝑡−𝑖  )
𝛿                                                     (7) 

 
In the APARCH model, δ represents the power 
parameter applied to the estimated standard 
deviation, and it typically evaluates the impact on 
the conditional variance, with δ >. The parameter 
γ denotes the asymmetric coefficient, which 
captures the asymmetric effects up to the order r. 
For i=1,2…,r, |γi| ≤ 1, and for i > r, γi = 0, with r ≤ 
p. Unlike the traditional GARCH model, the 
APARCH model removes the restriction of non-
negative parameters. While the GARCH model 
assumes a symmetric response of the 
conditional variance to positive and negative 
shocks, it fails to account for the observed 
negative correlation between financial returns 
and return volatility. The APARCH model, by 
incorporating asymmetric power effects, 
addresses this limitation and offers a more 
nuanced representation of volatility dynamics. 

3.2.5 GJR GARCH model 
 
The GJR-GARCH model, introduced by Glosten, 
Jagannathan, and Runkle [3]), is an extension of 
the standard GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) 
model that specifically addresses the asymmetry 
observed in financial time series. This model 
accounts for the "leverage effect," which 
suggests that negative shocks to asset prices 
have a more significant impact on volatility than 
positive shocks of the same magnitude. The 
GJR-GARCH model aims to capture 
asymmetries in volatility responses to positive 
and negative shocks. Traditional GARCH models 
assume that positive and negative shocks have 
the same impact on volatility, which may not 
align with real-world observations where 
negative shocks often lead to more significant 
increases in volatility compared to positive 
shocks. 
 
The GJR-GARCH model modifies the GARCH 
model to include an asymmetric term that 
differentiates the effects of positive and negative 
shocks. The variance equation for the GJR-
GARCH model is specified as follows: 
 

σt
2  = ω  +   α (𝜀𝑡−1)2 + γ I (𝜀𝑡−1 < 0) (𝜀𝑡−1)2+ 

β1𝜎𝑡−1
2                                                         (8) 

 
In this equation, σt

2 represents the conditional 
variance at time t, ω is a constant term, α is the 
coefficient for the lagged squared residuals 

(𝜀𝑡−1)2 , γ is the coefficient for the asymmetric 
term that captures the impact of negative shocks 
I(𝜀𝑡−1 < 0) is an indicator variable that equals 1 if 

𝜀𝑡−1 is negative, and 0 otherwise, and β is the 
coefficient for the lagged conditional variance 

𝜎𝑡−1
2 . The GJR-GARCH model is a valuable tool 

for modelling volatility in financial time series, 
particularly when asymmetries are present. By 
including an asymmetric term to capture the 
leverage effect, this model provides a more 
nuanced understanding of how different types of 
shocks affect volatility. Its ability to differentiate 
between positive and negative shocks makes it 
suitable for analysing financial data where such 
asymmetries are evident. 
 

3.2.6 NGARCH model 
 

The NGARCH (Nonlinear GARCH) model, 
introduced by Bera and Higgins in 1993, extends 
the traditional GARCH framework by 
incorporating nonlinear elements into the 
conditional variance equation. This model is 
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designed to capture more complex dynamics in 
financial time series that are not adequately 
addressed by linear GARCH models. In the 
NGARCH model, the conditional variance is 
specified as: 
 

σt
2  =  ω  +   α1𝜀𝑡−1

2  + α2 𝜀𝑡−2
2  +….+ αp𝜀𝑡−𝑝

2 + 

β1𝜎𝑡−1
2  + β2 𝜎𝑡−2

2  +….+ βq𝜎𝑡−𝑞
2                      (9) 

 
Here, σt

2 represents the conditional variance at 

time t, 𝜀𝑡−𝑖
2  are past squared residuals, and 𝜎𝑡−𝑗

2  

are past conditional variances. ω is a constant 
term, αi  are coefficients for the lagged squared 
residuals, and βj are coefficients for the lagged 
conditional variances. The key feature of the 
NGARCH model is the incorporation of nonlinear 
transformations in the conditional variance 
equation. This can involve modelling the 
conditional variance as a function of the absolute 
value of past shocks or employing more complex 
functional forms that allow for varying degrees of 
nonlinear effects. This flexibility enables the 
NGARCH model to capture volatility clustering 
and asymmetries more effectively than linear 
models. 
 
3.2.7 TGARCH model  
 
In 1994, Zakoian introduced the TGARCH 
(Threshold GARCH) model to address the 
asymmetry in volatility observed in financial 
markets. By incorporating threshold variables 
into the conditional variance equation, the 
TGARCH model allows for different responses to 
positive and negative shocks. The model is 
specified as follows: 
 

σt
2  =  ω+ α1𝜀𝑡−1

2 +α2 𝜀𝑡−2
2 +….+ αp𝜀𝑡−𝑝

2 +β1𝜎𝑡−1
2 + β2 

𝜎𝑡−2
2 +….+βq𝜎𝑡−𝑞

2 +γ𝜀𝑡−1
2 . II(𝜀𝑡−1<0)                   (10) 

 
In this equation, σt

2 represents the conditional 

variance at time t, 𝜀𝑡−𝑖
2  are past squared 

residuals, 𝜎𝑡−𝑗
2  are past conditional variances, ω 

is a constant term, αi  are coefficients for the 
lagged squared residuals, βj are coefficients for 
the lagged conditional variances. γ is a 
parameter capturing the asymmetric effect and 
II(𝜀𝑡−1<0) is an indicator function that equals 1 if 
the lagged residual εt-1 is negative and 0 
otherwise. By incorporating the threshold 
variable, the TGARCH model allows for different 
impacts of positive and negative shocks on the 
volatility, providing a more nuanced view of how 
volatility responds to varying market conditions. 
This model is particularly useful in capturing the 
leverage effect, where negative shocks have a 

greater impact on volatility than positive shocks 
of the same magnitude. 
 

3.3 Diagnostic Tests 
 
Conducted diagnostic tests to evaluate the 
adequacy and predictability of the models: 
The Akaike Information Criterion (AIC), The 
Bayesian Information Criterion (BIC) and The 
Hannan-Quinn Criterion (HQC) used to compare 
the goodness of fit of different models. These 
metrics help in balancing model fit with 
complexity, guiding the selection of the most 
appropriate model for volatility forecasting. While 
AIC tends to favour models with more 
parameters, BIC and HQC offer more stringent 
penalties, promoting model simplicity. By 
minimizing AIC, BIC and HQC, can select 
models that are both accurate and parsimonious. 
 

4. RESULTS ANALYSIS 
 
The results analysis of the empirical study on 
volatility predictability using various symmetric 
and asymmetric GARCH models reveals 
insightful findings across the FTSE 100, Hang 
Seng, NIKKEI 225, and S&P 500 indexes. Under 
the t-distribution, these models capture the 
distinct volatility dynamics of these major global 
stock indexes, reflecting their responses to 
economic events and market conditions over the 
past two decades. In particular, the TGARCH 
model consistently demonstrates superior 
performance in accounting for asymmetries and 
leverage effects, as evidenced by lower AIC, 
BIC, and HQC values. Additionally, utilizing the t-
distribution for model estimation enhances the 
robustness of the volatility forecasts by 
accommodating the heavy tails and extreme 
movements observed in financial time series 
data. 
 
The descriptive statistics for the FTSE 100, Hang 
Seng, Nikkei 225, and S&P 500 indexes from 
2004 to 2023 reveal distinct characteristics in 
terms of central tendency, dispersion, and 
distribution shape. The S&P 500 has the highest 
mean return (0.02893) and median return 
(0.06967), indicating a generally upward trend in 
returns compared to the other indexes. In 
contrast, the Hang Seng index shows the lowest 
mean return (0.0061719) and median return 
(0.046503), suggesting relatively lower 
performance. The minimum and maximum 
values illustrate the range of returns, with the 
Hang Seng showing the most extreme values (-
13.582 minimum and 13.407 maximum), 



 
 
 
 

Marisetty; Asian J. Econ. Busin. Acc., vol. 24, no. 9, pp. 63-84, 2024; Article no.AJEBA.121185 
 
 

 
71 

 

reflecting its higher volatility. The standard 
deviation, a measure of return variability, further 
confirms this, with the Hang Seng at 1.4624, 
followed by the Nikkei 225 (1.4216), indicating 
these indexes experienced more pronounced 
fluctuations than the FTSE 100 (1.1127) and 
S&P 500 (1.2072). 
 
Analysing the coefficients of variation (C.V.) 
provides additional insights into relative volatility. 
The Hang Seng has the highest C.V. at 236.94, 
indicating it has the highest relative volatility 
compared to its mean return. The Nikkei 225, 
despite having a higher standard deviation, has 
a lower C.V. (61.656) due to its relatively higher 
mean return. The skewness values indicate the 
asymmetry of return distributions, with the FTSE 
100 (-0.43601), Nikkei 225 (-0.44337), and S&P 
500 (-0.5249) all displaying negative skewness, 
suggesting a tendency for more frequent small 
gains and occasional large losses. The Hang 
Seng, with a skewness of 0.058254, is nearly 
symmetric. Kurtosis values reveal the 'tailedness' 
of distributions, with the S&P 500 (13.161) and 
FTSE 100 (10.537) having the highest excess 
kurtosis, indicating a higher likelihood of extreme 
returns compared to a normal distribution. The 
interquartile range (IQ range) shows that the 
Nikkei 225 (1.4091) and Hang Seng (1.4046) 
have wider ranges between the 25th and 75th 
percentiles, reflecting greater spread in their 
middle 50% of returns compared to the FTSE 
100 (1.022) and S&P 500 (0.97875). 
 
The Table 2 presents the results of unit root tests 
(ADF and ADF GLS) and the KPSS test on the 
returns of four popular global stock market 
indexes: FTSE 100, Hang Seng, Nikkei 225, and 
S&P 500. The ADF and ADF GLS tests show 
significantly negative values with p-values of 
0.0000, indicating strong rejection of the null 
hypothesis of a unit root for all four indexes. This 
suggests that the returns of these indexes are 
stationary. The KPSS test, which tests for 
stationarity, also supports this conclusion as the 
test statistics are very low, with p-values greater 
than 0.1, indicating failure to reject the null 
hypothesis of stationarity. Therefore, all three 
tests consistently show that the returns of these 
indexes are stationary. 
 
In addition to stationarity, the ARCH-LM test 
results highlight the presence of time-varying 
volatility in all four indexes. The high values and 
p-values of 0.0000 from the ARCH-LM test 
indicate strong evidence of ARCH effects. This 
means that the volatility of returns for FTSE 100, 

Hang Seng, Nikkei 225, and S&P 500 changes 
over time and is not constant. These findings are 
crucial for financial modelling and forecasting, as 
they imply the need for models that can account 
for changing volatility, such as GARCH models. 
Understanding the stationary nature of returns 
and the presence of ARCH effects helps in 
building more accurate and reliable financial 
models. 
 
The Chart 1 illustrates daily returns of a FTSE 
100 index from around 2004 to 2023, highlighting 
significant periods of volatility. The most notable 
spike in volatility occurs during the 2008-2009 
financial crisis, where returns exhibit large 
fluctuations. There are also smaller spikes 
around other market events, but overall, the 
returns show a pattern of volatility clustering, 
where high-volatility periods are followed by 
more stable ones. This time-varying nature of 
volatility, evident from the Chart 1, supports the 
presence of ARCH effects as indicated in the 
earlier table. This behaviour underscores the 
importance of employing models like GARCH 
that can account for changing volatility in 
financial time series. 
 
The Chart 2 displays the daily returns of the 
Hang Seng index from 2004 to 2023, highlighting 
significant volatility phases. The 2008-2009 
financial crisis stands out with dramatic return 
fluctuations, reflecting market turmoil. Post-crisis, 
volatility decreases but occasional spikes occur, 
such as around 2011 due to the European debt 
crisis and in 2020 during the COVID-19 
pandemic. The returns exhibit a pattern of 
volatility clustering, where periods of high 
volatility are followed by calmer phases. This 
pattern is indicative of ARCH effects, suggesting 
that the volatility of returns changes over time in 
response to market conditions. This visual 
evidence supports the need for advanced 
econometric models like GARCH to effectively 
capture and predict these dynamics, essential for 
risk management and financial decision-making. 
 
The Chart 3 shows the daily returns of the Nikkei 
225 index from 2004 to 2023, exhibiting 
significant periods of volatility. The most notable 
spikes occur during the 2008-2009 financial 
crisis, where extreme positive and negative 
returns highlight the market instability. Another 
period of increased volatility is seen around 
2020, corresponding to the COVID-19 pandemic, 
which similarly caused sharp market fluctuations. 
Outside these major events, the returns display 
lower but still noticeable volatility, with occasional 
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Table 1. Descriptive statistics of Four International Indexes during 2004 to 2023 period 
 

Variable FTSE 100 HANGSENG NIKKEI225 S&P500 

Mean 0.010824 0.0061719 0.023056 0.02893 
Median 0.05645 0.046503 0.064472 0.06967 
Minimum -11.512 -13.582 -12.111 -12.765 
Maximum 9.3842 13.407 13.235 10.957 
Std. Dev. 1.1127 1.4624 1.4216 1.2072 
C.V. 102.8 236.94 61.656 41.723 
Skewness -0.43601 0.058254 -0.44337 -0.5249 
Ex. kurtosis 10.537 7.894 7.7374 13.161 
5% Perc. -1.6955 -2.303 -2.1938 -1.8047 
95% Perc. 1.6097 2.1204 2.0817 1.6344 
IQ range 1.022 1.4046 1.4091 0.97875 

(Source: Statistical calculations) 

 
Table 2. Unit Root Tests and ARCH Effect of Four International Indexes Returns 

 
Indexes ADF Test (12 lag) ADF GLS Test (12 lag ) KPSS Test (10 lag ) ARCH-LM Test (5 lag) 

FTSE 100 -21.0416* (0.0000) -66.6225* (0.0000) 0.022720* (>0.1000) 965.428* (0.0000) 
HANG SENG -23.5606* (0.0000) -54.4850* (0.0000) 0.027693* (>0.1000) 1083.88* (0.0000) 
NIKKEI 225 -72.2617* (0.0000) -49.5165* (0.0000) 0.050675* (>0.1000) 1071.17* (0.0000) 
S&P 500 -23.8751* (0.0000) -40.4292* (0.0000) 0.035506* (>0.1000) 1455.22* (0.0000) 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis) 

 



 
 
 
 

Marisetty; Asian J. Econ. Busin. Acc., vol. 24, no. 9, pp. 63-84, 2024; Article no.AJEBA.121185 
 
 

 
73 

 

 
 

Chart 1. FTSE 100 daily returns from 2004 to 2023 
(Source: Statistical calculations) 
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Chart 2. HANG SENG Index daily returns from 2004 to 2023 
(Source: Statistical calculations) 
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Chart 3. NIKKEI 225 Index daily returns from 2004 to 2023 
(Source: Statistical calculations) 
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Chart 4. S&P 500 Index daily returns from 2004 to 2023 
(Source: Statistical calculations)
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spikes likely linked to various economic and 
geopolitical factors. The pattern of volatility 
clustering—high volatility followed by periods of 
relative calm—indicates the presence of ARCH 
effects. This suggests that the volatility of the 
Nikkei 225 returns is time-varying, with periods 
of high volatility clustering together, necessitating 
the use of econometric models like GARCH to 
accurately capture and predict these dynamics in 
financial analysis. 
 
The chart 4 illustrates the daily returns of the 
S&P 500 index from 2004 to 2023, displaying 
notable periods of volatility, particularly during 
the 2008-2009 financial crisis and the 2020 
COVID-19 pandemic. These periods are 
characterized by sharp spikes and drops, 
indicating significant market turbulence. After the 
financial crisis, while overall volatility decreases, 
there are still occasional bursts, reflecting 
reactions to various economic and geopolitical 
events. The pattern of volatility clustering—high 
volatility periods followed by calmer ones—
suggests the presence of ARCH effects, where 
the volatility of returns changes over time. This 
time-varying nature of volatility is consistent with 
the need for GARCH models, which extend 
ARCH by modelling the persistence of volatility 
over time, to effectively capture and forecast 
these dynamics. Employing such models is 
crucial for accurate risk management and 
financial decision-making, as they account for 
the changing volatility inherent in financial 
markets. 
 
The analysis of the daily returns for the FTSE 
100, Hang Seng, Nikkei 225, and S&P 500 
indexes from 2004 to 2023 reveals a consistent 
pattern of volatility clustering, particularly 
pronounced during the 2008-2009 financial crisis 
and the 2020 COVID-19 pandemic. Each index 
shows sharp spikes and drops during these 
periods, reflecting significant market instability. 
Post-crisis, all indexes exhibit reduced but still 
noticeable volatility with occasional bursts linked 
to various economic and geopolitical events. The 
observed time-varying nature of volatility, 
characteristic of ARCH effects, underscores the 
necessity of using GARCH models to account for 
the persistence and changing volatility over time. 
This pattern indicates that advanced 
econometric models like GARCH are essential 
for accurate financial analysis, risk management, 
and decision-making, as they effectively capture 
and predict the dynamic nature of                          
market volatility inherent across these global 
indexes. 

The Table 3 summarizes the parameter 
coefficients and fit statistics for several GARCH 
variants applied to the FTSE 100 Index returns, 
each offering a unique approach to modelling 
volatility. The GARCH (1,1) model presents a 
constant of 0.0505, Omega (ω) of 0.0242, Alpha 
(α) of 0.1217, and Beta (β) of 0.8596. These 
parameters reflect the standard approach of the 
GARCH model, capturing a general volatility 
persistence where the current volatility is 
influenced by past squared returns and past 
volatility. The T/S GARCH (1,1) model shows 
similar trends but with a slightly lower constant 
(0.0499) and Omega (0.0268), alongside a 
higher Alpha (0.1282) and Beta (0.8789). These 
variations suggest that while T/S GARCH aligns 
closely with the standard GARCH model, it 
adjusts for different volatility clustering and 
persistence dynamics, evidenced by the 
marginally higher Alpha and Beta values. 
 
The GJR (1,1) model introduces an asymmetry 
effect with a significant Gamma (γ) of 1.0200, 
indicating that negative shocks have a greater 
impact on volatility than positive shocks of the 
same magnitude. This model also has a high 
Beta (0.8717), suggesting substantial 
persistence of volatility. The TGARCH (1,1) 
model exhibits a higher Gamma (γ) of 1.0459 
and a higher Beta (0.9129), further emphasizing 
its ability to capture leverage effects, where 
negative returns amplify volatility more than 
positive returns. The NGARCH (1,1) model's 
high Delta (δ) of 1.7630 indicates a pronounced 
impact of past shocks on current volatility, while 
the APARCH (0,1) model's very high Omega 
(0.8725) and Delta (1.3229) highlight its 
significant asymmetric response. The EGARCH 
(1,1) model, with its negative Omega (-0.1128) 
and high Beta (0.9790), captures asymmetric 
effects and a unique approach to volatility 
modelling. Among these models, the TGARCH 
(1,1) achieves the lowest AIC (12925.75) and 
BIC (12964.91), suggesting it provides the most 
efficient fit for the data by balancing model 
complexity and goodness of fit. 
 
The Table 4 provides the parameter coefficients 
for various GARCH variants applied to the Hang 
Seng Index returns, revealing significant 
differences across models. The Constant term 
(C) is significant for all models, with values 
ranging from 0.0307 in TGARCH (1,1) to 0.0520 
in both GARCH (1,1) and NGARCH (1,1), 
indicating the presence of a consistent base 
level of volatility. The Omega (ω) parameter, 
which represents the constant part of the 
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Table 3. GARCH Variants Parameter coefficients of FTSE 100 Index Returns 
 

Model/ Parameter  GARCH (1,1) T/S GARCH (1,1) GJR (1,1)  TGARCH (1,1) NGARCH (1,1)  APARCH (0,1)  EGARCH (1,1) 

Constant 0.0505* (0.0000) 0.0499 * (0.0000) 0.0242* (0.0202) 0.0167*  (0.0000) 0.0507*  (0.0000) 0.0427* (0.0001) 0.0204* (0.0497) 
Omega  (ω) 0.0242* (0.0000) 0.0268* (0.0000) 0.0256*  (0.0000) 0.0260*  (0.0000) 0.0252*  (0.0000) 0.8725*  (0.0000) -0.1128* (0.0000) 
Alpha (α) 0.1217* (0.0000) 0.1282* (0.0000) 0.0495*  (0.0000) 0.0813*  (0.0000) 0.1275*  (0.0000) 0.4061*  (0.0000) 0.1368*  (0.0000) 
Gamma (γ) - - 1.0200*  (0.0000) 1.0459*  (0.0000) - 0.2346*  (0.0000) -0.1433* (0.0000) 
Beta (β) 0.8596*  (0.0000) 0.8789*  (0.0000) 0.8717*  (0.0000) 0.9129*  (0.0000) 0.8633*  (0.0000) - 0.9790*  (0.0000) 
Delta (δ) - - - - 1.7630*  (0.0000) 1.3229*  (0.0000) - 
AIC 13116.41 13128.79 12964.31 12925.75 13117.59 13734.40 12945.35 
BIC 13149.04 13161.43 13003.52 12964.91 13156.76 13773.56 12984.51 
HQC 13127.84 13140.23 12978.01 12939.47 13131.31 13748.12 12959.07 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis) 

 
Table 4. GARCH Variants Parameter coefficients of HANG SENG Index Returns 

 
Model/ Parameter  GARCH (1,1) T/S GARCH (1,1) GJR (1,1)  TGARCH (1,1) NGARCH (1,1)  APARCH (1,1)  EGARCH (1,1) 

Constant 0.0520* (0.0004) 0.0520* (0.0004) 0.0337* (0.0253) 0.0307*  (0.0399) 0.0520*  (0.0004) 0.0316* (0.0339) 0.0331* (0.0000) 
Omega  (ω) 0.0117* (0.0028) 0.0175* (0.0002) 0.0175*  (0.0004) 0.0272*  (0.0000) 0.0117*  (0.0064) 0.0255*  (0.0000) -0.0896* (0.0000) 
Alpha (α) 0.0582* (0.0000) 0.0705* (0.0000) 0.0510*  (0.0000) 0.0653*  (0.0000) 0.0582*  (0.0000) 0.0640*  (0.0000) 0.1236*  (0.0000) 
Gamma (γ) - - 0.3656*  (0.0000) 0.5693*  (0.0000) - 0.5359*  (0.0000) -0.0636* (0.0000) 
Beta (β) 0.9369*  (0.0000) 0.9376*  (0.0000) 0.9314*  (0.0000) 0.9351*  (0.0000) 0.9369*  (0.0000) 0.9344* (0.0000) 0.9870*  (0.0000) 
Delta (δ) - - - - 2.0011*  (0.0000) 1.1608*  (0.0000) - 
AIC 15904.63 15915.72 15853.57 15843.89 15906.63 15845.14 15850.69 
BIC 15937.15 15948.23 15892.58 15882.91 15945.65 15890.66 15889.70 
HQC 15916.04 15927.12 15867.25 15857.58 15920.32 15861.10 15864.37 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis) 

 
Table 5. GARCH Variants Parameter coefficients of NIKKEI 225 Index Returns 

 
Model/ Parameter  GARCH (1,1) T/S GARCH (1,1) GJR (1,1)  TGARCH (1,1) NGARCH (1,1)  APARCH (1,1)  EGARCH (1,1) 

Constant 0.0771* (0.0000) 0.0747* (0.0000) 0.0520* (0.0005) 0.0418*  (0.0048) 0.0762*  (0.0000) 0.0416* (0.0047) 0.0460* (0.0019) 
Omega  (ω) 0.0391* (0.0002) 0.0454* (0.0002) 0.0623*  (0.0004) 0.0748*  (0.0000) 0.0425*  (0.0000) 0.0750*  (0.0000) -0.1312* (0.0000) 
Alpha (α) 0.1007* (0.0000) 0.1078* (0.0000) 0.0800*  (0.0000) 0.1030*  (0.0000) 0.1093*  (0.0000) 0.1032*  (0.0000) 0.1881*  (0.0000) 
Gamma (γ) - - 0.5425*  (0.0000) 0.7434*  (0.0000) - 0.7450*  (0.0000) -0.1253* (0.0000) 
Beta (β) 0.8806*  (0.0000) 0.8936*  (0.0000) 0.8591*  (0.0000) 0.8790*  (0.0000) 0.8885*  (0.0000) 0.8792* (0.0000) 0.9605*  (0.0000) 
Delta (δ) - - - - 1.4095*  (0.0000) 0.9857*  (0.0000) - 
AIC 15794.34 15792.39 15688.69 15647.02 15790.03 15649.00 15662.37 
BIC 15826.82 15824.87 15727.67 15685.99 15829.00 15694.47 15701.35 
HQC 15805.73 15803.78 15702.37 15660.69 15803.70 15664.95 15676.05 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis) 
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Table 6. GARCH Variants Parameter coefficients of S&P 500 Index Returns 
 

Model/ Parameter  GARCH (1,1) T/S GARCH (1,1) GJR (1,1)  TGARCH (1,1) NGARCH (1,1)  APARCH (0,1)  EGARCH (1,1) 

Constant 0.0818* (0.0000) 0.0814* (0.0000) 0.0550* (0.0000) 0.0460*  (0.0000) 0.0818*  (0.0000) 0.0728* (0.0000) 0.0534* (0.0000) 
Omega  (ω) 0.0165* (0.0000) 0.0244* (0.0000) 0.0196*  (0.0000) 0.0297*  (0.0000) 0.0160*  (0.0000) 1.0794*  (0.0000) -0.1250* (0.0000) 
Alpha (α) 0.1312* (0.0000) 0.1383* (0.0000) 0.0549*  (0.0000) 0.0933*  (0.0000) 0.1293*  (0.0000) 0.4606*  (0.0000) 0.1516*  (0.0000) 
Gamma (γ) - - 1.0049*  (0.0000) 1.1391*  (0.0000) - 0.2327*  (0.0003) -0.1693* (0.0000) 
Beta (β) 0.8631*  (0.0000) 0.8777*  (0.0000) 0.8713*  (0.0000) 0.9036*  (0.0000) 0.8620*  (0.0000) - 0.9789*  (0.0000) 
Delta (δ) - - - - 2.0709*  (0.0000) 1.1832*  (0.0000) - 
AIC 13087.93 13117.41 12921.62 12870.59 13089.85 14010.28 12899.18 
BIC 13120.55 13150.03 12960.77 12909.74 13128.99 14049.43 12938.32 
HQC 13099.35 13128.84 12935.34 12884.31 13103.56 14024.00 12912.89 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis)
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conditional variance, varies from 0.0117 in 
GARCH (1,1) and NGARCH (1,1) to 0.0272 in 
TGARCH (1,1). Interestingly, EGARCH (1,1) 
shows a negative value of -0.0896, suggesting a 
different approach in capturing the volatility 
dynamics compared to other models. The Alpha 
(α) parameter, measuring the impact of past 
squared returns on current volatility, is significant 
across all models, with the highest value in 
EGARCH (1,1) at 0.1236 and the lowest in GJR 
(1,1) at 0.0510, indicating varying sensitivity to 
past shocks. 
 
The Gamma (γ) parameter, which captures the 
asymmetry in volatility, is present and significant 
in GJR (1,1), TGARCH (1,1), APARCH (1,1), and 
EGARCH (1,1). TGARCH (1,1) exhibits the 
highest Gamma value at 0.5693, indicating 
strong asymmetry in the volatility response to 
negative shocks, whereas EGARCH (1,1) shows 
a negative Gamma at -0.0636, highlighting the 
leverage effects. The Beta (β) parameter, 
indicative of volatility persistence, is high across 
all models, with values ranging from 0.9314 in 
GJR (1,1) to 0.9870 in EGARCH (1,1), signifying 
strong persistence in volatility. Delta (δ), specific 
to NARCH (1,1) and APARCH (1,1), shows 
significant values of 2.0011 and 1.1608, 
respectively. The model fit criteria (AIC, BIC, and 
HQC) suggest that TGARCH (1,1) and GJR (1,1) 
models provide a better fit, with TGARCH (1,1) 
having the lowest AIC at 15843.89 and HQC at 
15857.58, indicating these models' effectiveness 
in capturing the Hang Seng Index's volatility 
dynamics. 
 
The Table 5 presents the parameter coefficients 
for various GARCH variants applied to NIKKEI 
225 index returns, demonstrating how each 
model captures the volatility dynamics of the 
index. The Constant term is significant across all 
models, with the highest value in GARCH (1,1) 
at 0.0771 and the lowest in TGARCH (1,1) at 
0.0418. The Omega (ω) parameter, representing 
the Constant volatility component, ranges from 
0.0391 in GARCH (1,1) to 0.0748 in TGARCH 
(1,1), with APARCH (1,1) showing a slightly 
higher value at 0.0750, indicating a notable base 
level of volatility across these models. Alpha (α), 
the coefficient for past squared returns, is 
significant across all models, with values ranging 
from 0.0800 in GJR (1,1) to 0.1881 in EGARCH 
(1,1), highlighting a strong sensitivity to past 
shocks, particularly in the EGARCH model. 
 
Gamma (γ), which captures the asymmetry in 
volatility, shows significant variation among the 

models where it is applicable. GJR (1,1) and 
TGARCH (1,1) have values of 0.5425 and 
0.7434, respectively, while APARCH (1,1) and 
EGARCH (1,1) exhibit values of 0.7450 and -
0.1253, respectively, indicating the presence of 
leverage effects. Beta (β), representing the 
persistence of volatility, is consistently high and 
significant across all models, with the highest 
value in EGARCH (1,1) at 0.9605, suggesting 
strong volatility persistence. Delta (δ), specific to 
NGARCH (1,1) and APARCH (1,1), shows 
significant values of 1.4095 and 0.9857, 
respectively. The model fit criteria (AIC, BIC, and 
HQC) suggest that TGARCH (1,1) and APARCH 
(1,1) models provide a better fit with lower 
values, with TGARCH (1,1) having the lowest 
AIC and HQC at 15647.02 and 15660.69, 
respectively, indicating their superior 
performance in capturing the volatility dynamics 
of the NIKKEI 225 index returns. 
 
The Table 6 outlines the parameter coefficients 
for various GARCH variants applied to the S&P 
500 index returns, revealing insights into the 
volatility dynamics of the index. Across all 
models, the Constant term is significant, with 
values ranging from 0.0460 in TGARCH (1,1) to 
0.0818 in GARCH (1,1) and NGARCH (1,1), 
indicating consistent base-level volatility. The 
Omega (ω) parameter, which represents the 
Constant component of the conditional variance, 
ranges from 0.0160 in NGARCH (1,1) to 0.0297 
in TGARCH (1,1), except for APARCH (0,1) 
where it is notably higher at 1.0794, and in 
EGARCH (1,1) where it is negative at -0.1250. 
The Alpha (α) parameter, which measures the 
impact of past squared returns on current 
volatility, is significant across all models, with the 
highest value in APARCH (0,1) at 0.4606 and the 
lowest in GJR (1,1) at 0.0549, indicating varying 
degrees of sensitivity to past shocks across 
models. 
 
Gamma (γ), which captures asymmetry in 
volatility, is present and significant in GJR (1,1), 
TGARCH (1,1), APARCH (0,1), and EGARCH 
(1,1). The highest Gamma value is observed in 
TGARCH (1,1) at 1.1391, indicating strong 
asymmetry, while the lowest is in EGARCH (1,1) 
at -0.1693, suggesting the presence of leverage 
effects. The Beta (β) parameter, indicating 
volatility persistence, is high across all models, 
with values ranging from 0.8620 in NARCH (1,1) 
to 0.9789 in EGARCH (1,1), signifying strong 
persistence in volatility. Delta (δ), specific to 
NARCH (1,1) and APARCH (0,1), shows 
significant values of 2.0709 and 1.1832, 
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respectively. The model fit criteria (AIC, BIC, and 
HQC) indicate that TGARCH (1,1) and GJR (1,1) 
models provide a better fit, with TGARCH (1,1) 
having the lowest AIC at 12870.59 and HQC at 
12884.31, suggesting these models' superiority 
in capturing the S&P 500's volatility dynamics 
effectively. 
 
The above comparative analysis of various 
GARCH model variants applied to different stock 
indices, highlighting their distinct approaches to 
capturing volatility dynamics. For the FTSE 100 
Index, the standard GARCH (1,1) model offers a 
balanced fit with a Constant of 0.0505, Omega 
(ω) of 0.0242, Alpha (α) of 0.1217, and Beta (β) 
of 0.8596. The T/S GARCH (1,1) model shows 
similar results but with slightly lower Constant 
and Omega values, coupled with marginally 
higher Alpha and Beta, indicating refined 
adjustments for volatility clustering. The GJR 
(1,1) and TGARCH (1,1) models incorporate 
asymmetry effects, with the TGARCH (1,1) 
model displaying the best fit metrics (lowest AIC 
and BIC), capturing leverage effects effectively 
through a higher Gamma (γ) of 1.0459 and 
substantial Beta (β) of 0.9129. 
 
In contrast, models applied to the Hang Seng 
Index and NIKKEI 225 Index show varying 
parameter values and fit statistics. For the Hang 
Seng Index, the TGARCH (1,1) and GJR (1,1) 
models provide a better fit with low AIC and HQC 
values, highlighting their effectiveness in 
capturing volatility dynamics. Similarly, the 
NIKKEI 225 Index results reveal TGARCH (1,1) 
and APARCH (1,1) as superior models, with 
TGARCH (1,1) again showing the lowest AIC 
and HQC. For the S&P 500 Index, the APARCH 
(0,1) model stands out with the highest Alpha (α) 
of 0.4606, reflecting strong sensitivity to past 
shocks. Overall, TGARCH (1,1) consistently 
demonstrates strong performance across 
indices, balancing asymmetry, volatility 
persistence, and model fit criteria [43]. 
 

5. CONCLUSION 
 
This study comprehensively examines the 
volatility dynamics of major global stock 
indexes—FTSE 100, Hang Seng Index, NIKKEI 
225, and S&P 500—over a 20-year period using 
various GARCH models. The analysis reveals 
significant volatility clustering across all indexes, 
with pronounced spikes during critical market 
events such as the 2008 financial crisis and the 
COVID-19 pandemic. Among the models 
evaluated, the TGARCH (Threshold GARCH) 

model consistently demonstrates superior 
performance in capturing asymmetries and 
leverage effects, particularly in the FTSE 100 
and Hang Seng Index [43]. This model’s ability to 
differentiate between positive and negative 
shocks provides a more nuanced understanding 
of volatility dynamics. The APARCH (Asymmetric 
Power ARCH) model also shows notable 
effectiveness, especially for the S&P 500 Index, 
by addressing asymmetries in volatility response 
[44,45]. 
 
The study highlights the limitations of traditional 
GARCH models in explaining the asymmetric 
nature of financial volatility. Advanced models 
like TGARCH and APARCH offer significant 
improvements by incorporating asymmetric 
effects, thereby enhancing the accuracy of 
volatility forecasts. In conclusion, the findings 
underscore the necessity of employing 
sophisticated econometric models to capture the 
complex volatility patterns in global financial 
markets. The TGARCH and APARCH models, in 
particular, offer valuable insights for financial 
analysis, risk management, and decision-
making, by providing a more accurate 
representation of market volatility and its 
response to various shocks. 
 

6. LIMITATIONS AND FURTHER SCOPE 
OF THE STUDY 

 
The GARCH models, while effective in capturing 
volatility clustering in financial markets, have 
notable limitations. They often struggle to 
accurately represent extreme market events, 
such as financial crises, which can lead to 
sudden and significant changes in volatility. 
Traditional GARCH models typically assume 
symmetry, meaning they treat positive and 
negative shocks as having the same impact on 
volatility, an assumption that doesn't align with 
the reality of financial markets where negative 
shocks often trigger greater volatility spikes. 
Additionally, the effectiveness of GARCH models 
is sensitive to the chosen model specifications 
and distributional assumptions, which can lead to 
challenges in accurately modelling volatility, 
particularly when the underlying data is complex 
or the model is improperly specified. 
 
Looking forward, future research could focus on 
integrating machine learning techniques with 
GARCH models to better capture non-linear 
patterns and interactions in the data. There is 
also potential in applying these models to high-
frequency data, which could offer more detailed 
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insights into market dynamics throughout a 
trading day. Another promising direction is the 
use of advanced GARCH models in multi-asset 
portfolios, allowing for the modelling of volatility 
co-movements across different assets. 
Incorporating macroeconomic variables into 
GARCH models could further enhance their 
ability to account for broader economic 
influences on market volatility. Finally, exploring 
the application of GARCH models in scenario 
analysis and stress testing could provide 
valuable insights for risk management and 
regulatory frameworks. 
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