
*Corresponding author: Email: chukwudioyoko@gmail.com;

Cite as: Peter, Oforjetu Chukwudi, and Andrew Ishaku Wreford. 2024. “An Android Malware Detection System Based on a
Hybrid Artificial Neural Network and Decision Tree”. Asian Basic and Applied Research Journal 6 (1):132-41.
https://jofresearch.com/index.php/ABAARJ/article/view/147.

Asian Basic and Applied Research Journal

Volume 6, Issue 1, Page 132-141, 2024; Article no.ABAARJ.1491

An Android Malware Detection System
Based on a Hybrid Artificial Neural

Network and Decision Tree

Oforjetu Chukwudi Peter a* and Andrew Ishaku Wreford a

a Department of Computer Science, Federal University Wukari, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the
final manuscript.

Article Information

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://prh.globalpresshub.com/review-history/1491

Received: 29/12/2023
Accepted: 01/03/2024
Published: 16/09/2024

ABSTRACT

When it comes to sharing data, the broad use of cloud computing has been a huge boon. The
development of cloud computing has brought many benefits, but it has also opened the door for
criminals to steal sensitive information by taking advantage of its accessibility. This research looks
at how deep learning and machine learning techniques, particularly ANN and DT algorithms, can be
used to counteract malware. To construct a hybrid model, these methods are combined using a
stacking methodology. The investigation was conducted using the Android Network Traffic dataset
from Kaggle. We use the Information Gain algorithm for feature selection and a variety of metrics to
measure the models' performance, with accuracy serving as the main indicator. On the Android
network traffic dataset, the hybrid model attained a 99% accuracy score, according to the results.
To improve data security in cloud-based systems and deal with malware, this study shows that
integrating deep learning and machine learning approaches works

Keywords: Anomaly-based; malicious software; signature-based; android malware; heuristic-based

detection.

Original Research Article

https://prh.globalpresshub.com/review-history/1491

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

133

1. INTRODUCTION

Over the past several decades, internet usage
has skyrocketed thanks to the development of
Android smart devices. As a result, there has
been an exponential growth in the amount of
personal, sensitive, and critical data travelling
across worldwide networks [1]. The rise of app
shops such as Apple's App Store and Google
Play has been a boon to the growth of mobile
internet technologies, but it has also brought
certain problems, most notably invasions of
privacy and security caused by bad actors [2].

Currently, the market share and sales volumes
are dominated by Android, an open-source
mobile operating system that uses the Linux
kernel framework [3]. The increasing use of
Android devices prompts users to store personal
and critical information on their mobile devices,
making them targets for malicious application
developers who exploit app store downloads,
often requiring unnecessary permissions or
internet access (Recep et al., 2021). This
vulnerability is compounded by certain
applications persistently demanding specially
designated unnecessary permissions,
undermining security mechanisms and making
systems susceptible to malicious attacks.

Malware, recognized as a significant threat to
modern computer systems, poses severe risks to
societal activities [4]. Recent high-profile cyber-
attacks on global corporations, particularly
ransomware incidents, have resulted in
substantial financial, operational, and
reputational damages [5]. Modern anonymous
payment mechanisms have made ransomware
more prevalent by allowing its creators to encrypt
specific files in exchange for a ransom,
endangering users' privacy, authenticity, and data
availability in the process. A high degree of
vulnerability to disclosure, modification, or
unavailability of sensitive information due to
unauthorised access is posed by these assaults.

Hence, there is a growing need for efficient and
effective techniques to counter the increasingly
complex and advanced malicious attacks that
attempt to breach networks, devices, or systems.
These attacks pose a considerable threat to
information security, affecting the operation of
systems and compromising data confidentiality
[6].

Several approaches to malware detection have
been investigated by researchers. These include

rule-based methods, pattern-matching
approaches, artificial intelligence (deep learning)
techniques, supervised, unsupervised, and semi-
supervised machine learning methods, and
artificial intelligence (Ce et al., [7], Nisa et al., [8],
Yeo et al., [9], Gibert et al., [10]. Android malware
assaults continue to be a widespread problem,
despite these measures. They cause substantial
economic and IP damage. According to Wazid et
al. [2], malware developers are always coming
out with new variants that are hard to detect
because they use obfuscation and small code
changes to bypass commercial detection
technologies.

In light of the ever-increasing sophistication of
cyber threats, this research presents an efficient
method for detecting evolving malware strains by
combining deep learning with machine learning
methods. The Decision Tree and Artificial Neural
Network are combined to produce a hybrid model
to improve scalability and improve detection
speed. An Android Network Traffic dataset
obtained from the Kaggle machine learning
archives was used as the basis for the analysis.

2. LITERATURE REVIEW

2.1 Related Works

To find malware using a neural network, Hossain
et al. [11] compared and contrasted the
performance of three different neural networks:
CNN, LSTM, and GRU. The authors used
samples from the Portable Executables (PE)
dataset, which was obtained from
virusshare.com, portableapps.com, and the
Windows 7 x 86 directories, and CNN
outperformed the other two models with an
accuracy of 83% in detecting malware, compared
to LSTM's 65% and GRU's 76%.

Yuxin and Siyi [12] introduced an innovative
malware detection model based on the deep
belief network (DBN) structure. This model
utilized two hidden layers capable of
accommodating up to 200 neurons. Its main goal
was to identify and classify malware instances
based on their unique characteristics. To
evaluate its performance, the authors conducted
thorough testing using an OpCode-n-gram
dataset. This dataset was thoughtfully divided
into four subsets, each containing 850 samples
of malware and 850 samples of benign software.
This rigorous evaluation allowed for a
comprehensive assessment of the model's
capabilities across a diverse range of samples.

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

134

The results were impressive, with the DBN model
achieving an accuracy rate of 96.5% when
analyzing 200 distinct features. This high
accuracy demonstrates the model's effectiveness
in distinguishing between malware and benign
software, highlighting its potential for real-world
applications in strengthening cybersecurity.

Cai et al. [13] presented a novel Android app
classification system called DroidCat. This
system utilises dynamic method calls and ICC
Intents to achieve robust and dynamic
categorization of Android applications. The
proposed method effectively managed reflection
without dependence on system calls or
permissions. Moreover, in comparison to other
comparable state-of-the-art static and dynamic
malware detection techniques, the proposed
technique shows greater resilience. Furthermore,
the study utilised a total of 34,343
applications obtained from diverse sources
spanning nine years. Subsequently, a
performance metric was derived. The authors
achieved a 97% F1 score accuracy when
comparing their methodology to two state-of-the-
art approaches.

In 2020, Zhongru et al. created two deep
learning-based end-to-end algorithms for
detecting Android malware. The authors
preprocess the raw bytecodes of Android
application classes.dex files by resampling them.
These files are then input to two deep learning
models, the Dalvik Executable-Convolution
Neural Network (Dex-CNN) and the Dalvik
Executable-Convolution Recurrent Neural
Network (Dex-CNN). Eight thousand legitimate
apps and eight thousand malicious apps culled
from the Google Play Store made up the dataset
used to train and assess the algorithms. The
author's investigations showed that Dex-CNN
and Dex-CRNN models obtained detection
accuracy of 93.4% and 95.8%, respectively.
Their models outperformed the competition when
it came to input file size, manual
feature engineering, and resource consumption.
They reasoned that their methods
would work better on Android IoT devices and
would benefit from the end-to-end learning
process.

Xing et al. [14] put out a deep learning-based
malware detection system that makes use of
Autoencoder. For both the benign labels and the
malicious malware from VirusShare, the writers
consulted a dataset obtained from the Google
App Store. The created model integrates an

autoencoder network with a virus representation
in greyscale images. After determining the
autoencoder's reconstruction error, the authors
examine the grey-scale image approach's
viability and employ the autoencoder's
dimensionality reduction features to achieve
malware classification from benign software. As
stated by the authors, the suggested detection
model attained a 96% accuracy rate and a
steady F-score of 96%.

3. METHODOLOGY

For feasible and effective implementation of a
malware detection model. Data preprocessing,
model application, and performance evaluation
are the three main ways that this study suggests
as part of a methodology. At the outset, there is
data preprocessing, which comprises cleaning up
the acquired dataset of any extraneous
characters and symbols (such as missing values,
noise, etc.). In addition, before data encoding
and scaling, a filtering method called information
gain is suggested for use in data preprocessing.
This method assesses and chooses all potential
combinations of attributes that substantially
impact the malware classification as benign or
malignant. In the context of machine learning
tasks, feature selection essentially means
reducing overfitting by picking the relevant
features, which in turn allows for faster algorithm
training, simpler models, higher prediction power,
and easier interpretation. The second step,
known as "model application," involves feeding
the two chosen models—the Artificial Neural
Network and the Decision Tree—the
preprocessed and chosen input dataset that has
been encoded and divided into test and training
sets. The result is a trained model that can be
evaluated and tested. The last stage is
performance evaluation, which involves testing
the trained model's ability to distinguish between
benign and malicious malware using test data.
The model is then assessed using various
machine learning classification metrics, including
accuracy score, precision metric, and others. Fig
1 illustrates the three procedures that were
discussed for the methodology.

3.1 Data Source

The dataset utilised by this study is the Android
network traffic dataset also sourced from the
Kaggle machine learning repository [15]. This
dataset is based on another dataset
(DroidCollector) that gets all the network traffic in
pcap (package capture) files. Furthermore, the

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

135

Fig. 1. Research methodology framework

Android network traffic dataset has a total of
4,704 benign records and a total of 3,141
malignant malware records.

3.2 Feature Selection

Using a threshold value and an ordered ranking
of all characteristics, information gain is a
univariate filter approach that picks attributes.
More specifically, the information gain method
calculates a meaningful information metric that
measures the amount of data obtained from a
dataset's class prediction depending on the

presence or absence of malware. Therefore, the
whole spectrum of malware characteristics is
divided into two parts according to the
established threshold. The characteristics above
the threshold are defined in the first part, while
the qualities below the threshold are defined in
the second. So, the feature that is higher than
the threshold is used as the data attribute that is
supplied to the model. Information gain can be
mathematically expressed as:

𝐼𝐺𝑧 = ∑ ∑
𝑖𝑘𝑚

𝑁
2
𝑚=1 log2

𝑖𝑘𝑚

𝑛𝑣𝑚
−1

𝑘=0

 ∑
𝑖𝑘1+ 𝑖𝑘2

𝑁
log2

𝑖𝑘1+ 𝑖𝑘2

𝑁
1
𝑘=0 … . . . (1)

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

136

 where IG defines the information gain, nvm is the number of instances of class k in region m, and ikm is
the number of expression levels of malware z in region m.

3.3 Classification Algorithms

3.3.1 Artificial neural network

To analyse data thoroughly, computational
models can use Artificial Neural Networks
(ANNs), which mimic the functioning of the
brain's neural circuits. Dendrites stand in for
inputs in artificial neural networks (ANN), nodes
are cell nuclei, synapses are weights, and axons
are the outputs. It is crucial to construct the ANN
model with W-weight values that minimise
prediction error for the suggested ANN algorithm.
To do this, the "backpropagation algorithm" turns
ANN into a learning system that can improve
itself based on its previous errors. The "gradient
descent" method is suggested as an optimisation
strategy. The prediction errors are quantified
using gradient descent. We try out different
values for W and see how they affect prediction
errors to discover the sweet spot. Lastly, those W
values are considered optimum because
adjusting W further does not result in a decrease
in errors.

3.3.2 Decision tree

The versatility of decision trees makes them a
go-to for many machine learning applications,
particularly those involving classification and
regression. Decision trees, as its name suggests,

make judgements based on data and how it
behaves. Since it doesn't rely on a linear
classifier, its performance is unaffected by the
data's linearity; instead, it uses a tree-like
structure to make decisions based on
conditional statements about whether or not an
event has occurred. At each stage, or node, of a
decision tree, the study attempts to form a
condition on the features to fully
separate the two-class labels (Benign or
Malignant) contained in the dataset as pure as
possible by decreasing the entropy threshold,
which is a measure of the impurity or
randomness in the dataset. This is how a broad
decision tree is visualised.

3.4 Performance Metrics

To assess the performance of the Artificial Neural
Network and Decision Tree on the Android
Network Traffic malware dataset obtained from
the Kaggle Machine Learning repository. This
study used the viability of the following evaluation
metrics.

Precision: Measures the classifier’s accuracy. It
is the percentage of the number of correctly
predicted positive instances divided by the total
number of predicted positive instances. Equation
3.2 depicts the mathematical expression for the
precision metrics.

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

137

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … … … … … 2

Where True Positives (TP) is a situation where
the actual class from a data record is true and
thus predicted true by the model and False
Positives (FP) is an instance where the actual
data record class is false but the model predicted
true.

Recall: One measure of a classifier's
thoroughness is its recall, which is sometimes
called its sensitivity or true positive rate. The
accuracy rate is determined by dividing the
number of positive cases that were accurately
predicted by the total number of positive
examples in the dataset. Recall can be
mathematically represented as shown in
equation 3:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … . . 3

Where False Negatives (FN) is an instance
where an actual data record point is true but the
model predicted false and

F-measure (or F-score): defines the harmonic
mean of precision and recall. It combines recall
and precision metrics to obtain a score. Equation
3.4 shows the mathematical formula for the F-
score.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
… … … .4

Accuracy: one way to quantify accuracy is by
considering the ratio of accurately predicted
occurrences to the total number of instances in
the dataset. According to equation 5, the
accuracy is determined by the proportion of
inputs in the test set that the classifier correctly
labels:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
… … … … … … 5

Where True Negatives (TN) is a scenario where
a data record was false and hence predicted
false by the model.

4. RESULTS AND DISCUSSION

4.1 Environmental Setup

The Android malware detection models were
implemented using Python programming

language via the Anaconda programming
environment on a Windows operating system
with a dual-core Intel Core I5 processor and 4GB
RAM. The model integrated includes the Artificial
Neural Network, the Decision Tree algorithm, and
a hybrid of both. The Python packages utilized
include the usage of Tensor API (for deep
learning model developments), NumPy modules
for numerical and multi-dimensional vector
operation, pandas for reading both the ClaMP
malware and the Android network traffic
datasets, and seaborn and Matplotlib (which are
some of the machine learning algorithms
targeted at visualizing the graphical behaviour of
the implemented models).

4.2 Parameter Setting

The parameters utilized for the ANN, DT, and
hybrid model are presented in Table 1. From the
parameters, the batch size defines the number of
the dataset input instances passed to the model
per unit layer. The batch size was set to 32 units
with the max epochs set to 10 epochs, a learning
approach of 0.0001, with Adam set as the
optimizer and drop out of 0.2 for each of the
layers of the model (Essentially, it is important to
note that the values for the defined parameters
were tweaked for several ranging values, the
presented values are the ones that gave the best
performance based on the experiment
conducted).

Table 1. Parameter setting

Parameter Value

Batch Size 32
Max epochs 10
Initial learn rate 0.001
Optimizer Adam
Drop 0.2

Loss Sparse Category
Cross Entropy

4.3 Feature Selection

As aforementioned the study incorporates a
feature selection technique using the information
gain algorithm. The essence of the feature
selection is to reduce the dataset dimensionality
and further eradicate less correlated features in
the detection and classification of Android
malware. The algorithm ‘information gain’ allows
the specification of the number of features to be
selected using a value called the k-threshold.
The value of k as a threshold was set to 10
during the experiment.

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

138

4.4 Results Presentation

The results of the Android malware detection
study present a comprehensive evaluation of
three different algorithms: Artificial Neural
Network (ANN), Decision Tree (DT), and the
Hybrid approach as shown in Table 3. These
algorithms were assessed based on several
performance metrics, including accuracy,
precision, recall, and F1-Score. The Artificial
Neural Network (ANN) achieved an accuracy
rate of 71%. In terms of precision for classifying
malware (1), it exhibited a precision of 68 and
83% (benign and malignant), indicating that it
correctly identified malicious software a
significant portion of the time. However, the recall
rate for malware (1) detection was relatively high
at 95 and 34%, suggesting that the ANN tended
to identify most of the actual malware instances.
Consequently, the F1-Score for malware
detection stood at 79 and 48%, reflecting a
relatively balanced performance between
precision and recall. On the other hand, the
Decision Tree (DT) algorithm outperformed the
ANN in terms of accuracy, achieving an
impressive accuracy rate of 94%. This indicates
that the DT model made fewer misclassifications
overall. Furthermore, the precision for malware
detection was notably high at 97 and 89%,
demonstrating a strong ability to correctly identify
malicious applications. The recall rate for
malware detection was also commendable
at 92 and 96%, indicating that the
DT model managed to capture a substantial
portion of actual malware instances.
Consequently, the F1-Score for malware
detection was a robust 95 and 92%, suggesting a
well-balanced performance between precision
and recall.

The Hybrid approach emerged as the top
performer among the three algorithms, boasting
an impressive accuracy rate of 99%. This
signifies an exceptional ability to classify
applications accurately. Notably, the precision for
malware detection in the Hybrid approach was
an astounding 99%, indicating an almost perfect
precision in identifying malicious software. The
recall rate for malware detection was also

impressive at 100 and 98%, signifying the
model's capability to capture nearly all actual
malware instances. Consequently, the F1-Score
for malware detection reached an impressive
99%, underscoring the Hybrid approach's
outstanding balance between precision and
recall.

In summary, the results show that the Hybrid
approach significantly outperforms both the ANN
and DT algorithms in terms of accuracy,
precision, recall, and F1-Score. While the ANN
and DT models exhibit respectable performance,
the Hybrid approach's exceptional precision and
recall make it a promising candidate for Android
malware detection, with the potential to provide
highly accurate and reliable results in real-world
applications. Fig. 2 shows the graphical result of
the algorithms used [16].

Table 2. Shows the selected features for the

dataset

S/N Andriod Network Traffic

1 Name

2 TCP-Packets

3 Dist-Port-TCP

4 External IPs

5 DNS-Query-times

6 UDP-packets,

7 Source App Packets

8 Remote App Packets

9 Source App bytes

10 Remote App Bytes

4.5 Receiver Operating Characteristics

To visualise the performance of the
developed model on the applied Android network
malware datasets, the receiver operating
characteristic was applied. The ROC curve
is a graph that shows the performance of a
classification model at all the classification
thresholds. The curve normally plots
two parameters namely the true positive and
false positive rate. The ROC for the models is
shown in Figs. 3-5 [17,18].

Table 3. Android network traffic dataset result

Algorithm Accuracy (%) Precision (0/1)
(%)

Recall (0/1)
(%)

F1-Score (0/1)
(%)

ANN 71 68/83 95/34 79/48

DT 94 97/89 92/96 95/92

Hybrid 99 99/99 1.0/98 99/99

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

139

Fig. 2. Result comparison visualization

Fig. 3. ANN malware model (ROC and AUC)

Fig. 4. DT malware model (ROC and AUC)

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

140

Fig. 5. Hybrid malware model (ROC and AUC)

5. CONCLUSION

This study after an extensive survey of the
malware detection techniques applied machine
and deep learning algorithms namely the ANN
and Decision Tree algorithm while hybridization
of the two algorithms via a stacking technique.
Furthermore, the performance of the developed
models after applying information gain as a
feature selection technique was evaluated based
on some metrics with the accuracy score metrics
as the major indicators. The comparison of the
implemented models revealed an accuracy of
97%, 94%, and 99%. To further scrutinise the
performance of the best performing, the best
model performance was compared with some
state-of-the-algorithms. The result of the
comparison revealed the hybrid model was
developed to outperform the state of the
algorithms with an accuracy score of 99%.
Hence, in a later study, researchers can apply
the viabilities of AI-based approaches such as
the Jaya algorithm for feature selection.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Kim YK, Lee JJ, Go MH, Kang HY, Lee K.
A systematic overview of the machine
learning methods for mobile malware
detection. Security and Communication
Networks. 2022;2(4).

2. Wazid M, Das AK, Rodrigues JJPC, Shetty
S, Park Y. IoMT Malware Detection
Approaches Analysis and Research
Challenges, in IEEE Access. 2019;7.
182459-182476, 2019,
DOI: 10.1109/ACCESS.2019.2960412.

3. Recep SA, Ibrahim AD, Necaattin B.
Permission-Based malware detection
system for andriod using machine learning
techniques. International Journal of
Software Engineering and Knowledge
Engineering. 2021; 3(2):1-10.

4. Afianian A, Niksefat S, Sadeghiyan B,
Baptiste D. Malware dynamic analysis
evasion techniques: A survey. ACM
Computing Survey; 2019.
Available:https://doi.org/10.1145/3365001.

5. Chen Q, Bridges RA. Automated
behavioural analysis of malware: a case
study of wannacry ransomware. In: 2017
16th IEEE International Conference on
Machine Learning and Applications
(ICMLA). 2017;454–600.

Available:https://doi.org/10.1109/ICMLA.20
17.0-119.

6. Daniel G, Carles M, Jordi P. The rise of
machine learning for detection and
classification of malware: Research
developments, trends, and challenges.
Journal of Network and Computer

https://doi.org/10.1145/3365001
https://doi.org/10.1109/ICMLA.2017.0-119
https://doi.org/10.1109/ICMLA.2017.0-119

Peter and Wreford; Asian Basic Appl. Res. J., vol. 6, no. 1, pp. 132-141, 2024; Article no.ABAARJ.1491

141

Applications. 2020;153:102526, ISSN
1084-8045,
Available:https://doi.org/10.1016/j.jnca.201
9.102526.

7. Ce L, Qiujian L, Ning L, Yan W, Degang S,
Yuanyuan Q. A novel deep framework for
dynamic malware detection based on API
sequence intrinsic features. Journal of
Computers & Security. 2022;116. ISSN
0167-4048,

Available:https://doi.org/10.1016/j.cose.202
2.102686.

8. Nisa M, Shah JH, Kanwal S, Raza M,
Khan MA, Damaševiˇcius R, Blažauskas T.
Hybrid malware classification method
using segmentation-based fractal texture
analysis and deep convolution neural
network features. Appl. Sci. 2020;10:49-
66.

9. Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J,
Song J, Park C. Flow-based malware
detection using a convolutional neural
network. International Conference on
Information Networking (ICOIN). 2018;
910-913,

DOI: 10.1109/ICOIN.2018.8343255

10. Gibert D, Bejar J, Mateu C, Planes J,
Solis D, Vicens R. Convolutional
Neural Networks for Classification
of Malware Assembly Code; 2017.
Available:https://www.cynet.com/malware/
4-malware-detection-techniques-and-their-
use-in-epp-and-edr/

11. Hossain H, Kayum SI, Paul A, Rohan AA,
Tasnim N, Hossain MI. Malware detection
using neural networks. IEEE. 202;11-6.

12. Yuxin D, Siyi Z. Malware detection based
on deep learning algorithm, Neural

Computing & Applications. 2017;31(2):
461–472.

13. Cai H, Meng N, Ryder B, Yao D. Droidcat:
effective android malware detection and
categorization via app-level profiling,
IEEE Transactions on Information
Forensics and Security. 2018;14(6):1455–
1470.

14. Xing X, Jin X, Elahi H, Jiang H, Wang G. A
malware detection approach using
autoencoder in deep learning. IEEE
Access. 2022;10:25696-25706.

15. López CCU, Villarreal JSD, Belalcazar
AFP, Cadavid AN, Cely JGD. Features to
detect android malware. IEEE. 2018;1-6.

16. Zhongru R, Haomin W, Qian N, Iftikhar H,
Bingcai C. End-to-end malware detection
for Android IoT devices using deep
learning. Ad Hoc Networks. 2020;101:102-
118. ISSN 1570-8705.
Available:https://doi.org/10.1016/j.adhoc.2
020.102098.

17. Lu Y, Pan Z, Liu J, Shen Y. Android
malware detection technology based on
improved Bayesian classification. In
Instrumentation, Measurement, Computer,
Communication and Control (IMCCC),
Third International Conference on. 2014;
1338–1341.
DOI: 10.1109/IMCCC.2013.297

18. Akshay M, Laxmi MP, Keyur K, Quamar N,
Ahmad YJ. NATICUSdroid: A malware
detection framework for Android using
native and custom permissions. Journal of
Information Security and Applications.
2021;58:102-106. ISSN 2214-2126.
Available:https://doi.org/10.1016/j.jisa.2020
.102696.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://prh.globalpresshub.com/review-history/1491

https://www.cynet.com/malware/4-malware-detection-techniques-and-their-use-in-epp-and-edr/
https://www.cynet.com/malware/4-malware-detection-techniques-and-their-use-in-epp-and-edr/
https://www.cynet.com/malware/4-malware-detection-techniques-and-their-use-in-epp-and-edr/
https://doi.org/10.1016/j.adhoc.2020.102098
https://doi.org/10.1016/j.adhoc.2020.102098
https://prh.globalpresshub.com/review-history/1491

