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ABSTRACT 
 

When it comes to sharing data, the broad use of cloud computing has been a huge boon. The 
development of cloud computing has brought many benefits, but it has also opened the door for 
criminals to steal sensitive information by taking advantage of its accessibility. This research looks 
at how deep learning and machine learning techniques, particularly ANN and DT algorithms, can be 
used to counteract malware. To construct a hybrid model, these methods are combined using a 
stacking methodology. The investigation was conducted using the Android Network Traffic dataset 
from Kaggle. We use the Information Gain algorithm for feature selection and a variety of metrics to 
measure the models' performance, with accuracy serving as the main indicator. On the Android 
network traffic dataset, the hybrid model attained a 99% accuracy score, according to the results. 
To improve data security in cloud-based systems and deal with malware, this study shows that 
integrating deep learning and machine learning approaches works 
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1. INTRODUCTION   
 

Over the past several decades, internet usage 
has skyrocketed thanks to the development of 
Android smart devices. As a result, there has 
been an exponential growth in the amount of 
personal, sensitive, and critical data travelling 
across worldwide networks [1]. The rise of app 
shops such as Apple's App Store and Google 
Play has been a boon to the growth of mobile 
internet technologies, but it has also brought 
certain problems, most notably invasions of 
privacy and security caused by bad actors [2]. 
 
Currently, the market share and sales volumes 
are dominated by Android, an open-source 
mobile operating system that uses the Linux 
kernel framework [3]. The increasing use of 
Android devices prompts users to store personal 
and critical information on their mobile devices, 
making them targets for malicious application 
developers who exploit app store downloads, 
often requiring unnecessary permissions or 
internet access (Recep et al., 2021). This 
vulnerability is compounded by certain 
applications persistently demanding specially 
designated unnecessary permissions, 
undermining security mechanisms and making 
systems susceptible to malicious attacks. 
 
Malware, recognized as a significant threat to 
modern computer systems, poses severe risks to 
societal activities [4]. Recent high-profile cyber-
attacks on global corporations, particularly 
ransomware incidents, have resulted in 
substantial financial, operational, and 
reputational damages [5].  Modern anonymous 
payment mechanisms have made ransomware 
more prevalent by allowing its creators to encrypt 
specific files in exchange for a ransom, 
endangering users' privacy, authenticity, and data 
availability in the process. A high degree of 
vulnerability to disclosure, modification, or 
unavailability of sensitive information due to 
unauthorised access is posed by these assaults. 
 
Hence, there is a growing need for efficient and 
effective techniques to counter the increasingly 
complex and advanced malicious attacks that 
attempt to breach networks, devices, or systems. 
These attacks pose a considerable threat to 
information security, affecting the operation of 
systems and compromising data confidentiality 
[6]. 
 
Several approaches to malware detection have 
been investigated by researchers. These include 

rule-based methods, pattern-matching 
approaches, artificial intelligence (deep learning) 
techniques, supervised, unsupervised, and semi-
supervised machine learning methods, and 
artificial intelligence (Ce et al., [7], Nisa et al., [8], 
Yeo et al., [9], Gibert et al., [10]. Android malware 
assaults continue to be a widespread problem, 
despite these measures. They cause substantial 
economic and IP damage. According to Wazid et 
al. [2], malware developers are always coming 
out with new variants that are hard to detect 
because they use obfuscation and small code 
changes to bypass commercial detection 
technologies. 
 
In light of the ever-increasing sophistication of 
cyber threats, this research presents an efficient 
method for detecting evolving malware strains by 
combining deep learning with machine learning 
methods. The Decision Tree and Artificial Neural 
Network are combined to produce a hybrid model 
to improve scalability and improve detection 
speed. An Android Network Traffic dataset 
obtained from the Kaggle machine learning 
archives was used as the basis for the analysis. 
 

2. LITERATURE REVIEW 
 

2.1 Related Works 
 
To find malware using a neural network, Hossain 
et al. [11] compared and contrasted the 
performance of three different neural networks: 
CNN, LSTM, and GRU. The authors used 
samples from the Portable Executables (PE) 
dataset, which was obtained from 
virusshare.com, portableapps.com, and the 
Windows 7 x 86 directories, and CNN 
outperformed the other two models with an 
accuracy of 83% in detecting malware, compared 
to LSTM's 65% and GRU's 76%. 
 
Yuxin and Siyi [12] introduced an innovative 
malware detection model based on the deep 
belief network (DBN) structure. This model 
utilized two hidden layers capable of 
accommodating up to 200 neurons. Its main goal 
was to identify and classify malware instances 
based on their unique characteristics. To 
evaluate its performance, the authors conducted 
thorough testing using an OpCode-n-gram 
dataset. This dataset was thoughtfully divided 
into four subsets, each containing 850 samples 
of malware and 850 samples of benign software. 
This rigorous evaluation allowed for a 
comprehensive assessment of the model's 
capabilities across a diverse range of samples. 
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The results were impressive, with the DBN model 
achieving an accuracy rate of 96.5% when 
analyzing 200 distinct features. This high 
accuracy demonstrates the model's effectiveness 
in distinguishing between malware and benign 
software, highlighting its potential for real-world 
applications in strengthening cybersecurity. 
 
Cai et al. [13] presented a novel Android app 
classification system called DroidCat. This 
system utilises dynamic method calls and ICC 
Intents to achieve robust and dynamic 
categorization of Android applications. The 
proposed method effectively managed reflection 
without dependence on system calls or 
permissions. Moreover, in comparison to other 
comparable state-of-the-art static and dynamic 
malware detection techniques, the proposed 
technique shows greater resilience. Furthermore, 
the study utilised a total of 34,343                  
applications obtained from diverse sources 
spanning nine years. Subsequently, a 
performance metric was derived. The authors 
achieved a 97% F1 score accuracy when 
comparing their methodology to two state-of-the-
art approaches. 
 
In 2020, Zhongru et al. created two deep 
learning-based end-to-end algorithms for 
detecting Android malware. The authors 
preprocess the raw bytecodes of Android 
application classes.dex files by resampling them. 
These files are then input to two deep learning 
models, the Dalvik Executable-Convolution 
Neural Network (Dex-CNN) and the Dalvik 
Executable-Convolution Recurrent Neural 
Network (Dex-CNN). Eight thousand legitimate 
apps and eight thousand malicious apps culled 
from the Google Play Store made up the dataset 
used to train and assess the algorithms. The 
author's investigations showed that Dex-CNN 
and Dex-CRNN models obtained detection 
accuracy of 93.4% and 95.8%, respectively. 
Their models outperformed the competition when 
it came to input file size, manual                            
feature engineering, and resource consumption. 
They reasoned that their methods                          
would work better on Android IoT devices and 
would benefit from the end-to-end learning 
process. 
 
Xing et al. [14] put out a deep learning-based 
malware detection system that makes use of 
Autoencoder. For both the benign labels and the 
malicious malware from VirusShare, the writers 
consulted a dataset obtained from the Google 
App Store. The created model integrates an 

autoencoder network with a virus representation 
in greyscale images. After determining the 
autoencoder's reconstruction error, the authors 
examine the grey-scale image approach's 
viability and employ the autoencoder's 
dimensionality reduction features to achieve 
malware classification from benign software. As 
stated by the authors, the suggested detection 
model attained a 96% accuracy rate and a 
steady F-score of 96%. 
 

3. METHODOLOGY  
 

For feasible and effective implementation of a 
malware detection model. Data preprocessing, 
model application, and performance evaluation 
are the three main ways that this study suggests 
as part of a methodology. At the outset, there is 
data preprocessing, which comprises cleaning up 
the acquired dataset of any extraneous 
characters and symbols (such as missing values, 
noise, etc.).  In addition, before data encoding 
and scaling, a filtering method called information 
gain is suggested for use in data preprocessing. 
This method assesses and chooses all potential 
combinations of attributes that substantially 
impact the malware classification as benign or 
malignant. In the context of machine learning 
tasks, feature selection essentially means 
reducing overfitting by picking the relevant 
features, which in turn allows for faster algorithm 
training, simpler models, higher prediction power, 
and easier interpretation. The second step, 
known as "model application," involves feeding 
the two chosen models—the Artificial Neural 
Network and the Decision Tree—the 
preprocessed and chosen input dataset that has 
been encoded and divided into test and training 
sets. The result is a trained model that can be 
evaluated and tested. The last stage is 
performance evaluation, which involves testing 
the trained model's ability to distinguish between 
benign and malicious malware using test data. 
The model is then assessed using various 
machine learning classification metrics, including 
accuracy score, precision metric, and others. Fig 
1 illustrates the three procedures that were 
discussed for the methodology. 
 

3.1 Data Source 
 

The dataset utilised by this study is the Android 
network traffic dataset also sourced from the 
Kaggle machine learning repository [15]. This 
dataset is based on another dataset 
(DroidCollector) that gets all the network traffic in 
pcap (package capture) files. Furthermore, the 
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Fig. 1. Research methodology framework 
 

Android network traffic dataset has a total of 
4,704 benign records and a total of 3,141 
malignant malware records. 
 

3.2 Feature Selection 
 
Using a threshold value and an ordered ranking 
of all characteristics, information gain is a 
univariate filter approach that picks attributes. 
More specifically, the information gain method 
calculates a meaningful information metric that 
measures the amount of data obtained from a 
dataset's class prediction depending on the 

presence or absence of malware. Therefore, the 
whole spectrum of malware characteristics is 
divided into two parts according to the 
established threshold. The characteristics above 
the threshold are defined in the first part, while 
the qualities below the threshold are defined in 
the second. So, the feature that is higher than 
the threshold is used as the data attribute that is 
supplied to the model. Information gain can be 
mathematically expressed as:  
 

𝐼𝐺𝑧 =  ∑ ∑
𝑖𝑘𝑚

𝑁
2
𝑚=1 log2

𝑖𝑘𝑚
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𝑘=0
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𝑖𝑘1+ 𝑖𝑘2

𝑁
log2
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𝑁
1
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 where IG defines the information gain, nvm is the number of instances of class k in region m, and ikm is 
the number of expression levels of malware z in region m. 
 

 
 

3.3 Classification Algorithms 
 
3.3.1 Artificial neural network 
 
To analyse data thoroughly, computational 
models can use Artificial Neural Networks 
(ANNs), which mimic the functioning of the 
brain's neural circuits. Dendrites stand in for 
inputs in artificial neural networks (ANN), nodes 
are cell nuclei, synapses are weights, and axons 
are the outputs. It is crucial to construct the ANN 
model with W-weight values that minimise 
prediction error for the suggested ANN algorithm. 
To do this, the "backpropagation algorithm" turns 
ANN into a learning system that can improve 
itself based on its previous errors. The "gradient 
descent" method is suggested as an optimisation 
strategy. The prediction errors are quantified 
using gradient descent. We try out different 
values for W and see how they affect prediction 
errors to discover the sweet spot. Lastly, those W 
values are considered optimum because 
adjusting W further does not result in a decrease 
in errors. 
 
3.3.2 Decision tree  
 
The versatility of decision trees makes them a 
go-to for many machine learning applications, 
particularly those involving classification and 
regression. Decision trees, as its name suggests, 

make judgements based on data and how it 
behaves. Since it doesn't rely on a linear 
classifier, its performance is unaffected by the 
data's linearity; instead, it uses a tree-like 
structure to make decisions based on             
conditional statements about whether or not an 
event has occurred. At each stage, or node, of a 
decision tree, the study attempts to form a 
condition on the features to fully                      
separate the two-class labels (Benign or 
Malignant) contained in the dataset as pure as 
possible by decreasing the entropy threshold, 
which is a measure of the impurity or 
randomness in the dataset. This is how a broad 
decision tree is visualised.  
 

3.4 Performance Metrics  
 

To assess the performance of the Artificial Neural 
Network and Decision Tree on the Android 
Network Traffic malware dataset obtained from 
the Kaggle Machine Learning repository. This 
study used the viability of the following evaluation 
metrics. 
 

Precision: Measures the classifier’s accuracy. It 
is the percentage of the number of correctly 
predicted positive instances divided by the total 
number of predicted positive instances. Equation 
3.2 depicts the mathematical expression for the 
precision metrics. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … … … … …           2 

 
Where True Positives (TP) is a situation where 
the actual class from a data record is true and 
thus predicted true by the model and False 
Positives (FP) is an instance where the actual 
data record class is false but the model predicted 
true. 
 
Recall: One measure of a classifier's 
thoroughness is its recall, which is sometimes 
called its sensitivity or true positive rate. The 
accuracy rate is determined by dividing the 
number of positive cases that were accurately 
predicted by the total number of positive 
examples in the dataset. Recall can be 
mathematically represented as shown in 
equation 3: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … . .                                   3 

 
Where False Negatives (FN) is an instance 
where an actual data record point is true but the 
model predicted false and  
 
F-measure (or F-score): defines the harmonic 
mean of precision and recall. It combines recall 
and precision metrics to obtain a score. Equation 
3.4 shows the mathematical formula for the F-
score. 
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
… … … .4 

 
Accuracy: one way to quantify accuracy is by 
considering the ratio of accurately predicted 
occurrences to the total number of instances in 
the dataset. According to equation 5, the 
accuracy is determined by the proportion of 
inputs in the test set that the classifier correctly 
labels: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
… … … … … … 5 

 
Where True Negatives (TN) is a scenario where 
a data record was false and hence predicted 
false by the model. 
 

4. RESULTS AND DISCUSSION  
 

4.1 Environmental Setup 
 
The Android malware detection models were 
implemented using Python programming 

language via the Anaconda programming 
environment on a Windows operating system 
with a dual-core Intel Core I5 processor and 4GB 
RAM. The model integrated includes the Artificial 
Neural Network, the Decision Tree algorithm, and 
a hybrid of both. The Python packages utilized 
include the usage of Tensor API (for deep 
learning model developments), NumPy modules 
for numerical and multi-dimensional vector 
operation, pandas for reading both the ClaMP 
malware and the Android network traffic 
datasets, and seaborn and Matplotlib (which are 
some of the machine learning algorithms 
targeted at visualizing the graphical behaviour of 
the implemented models). 
 

4.2 Parameter Setting  
 
The parameters utilized for the ANN, DT, and 
hybrid model are presented in Table 1. From the 
parameters, the batch size defines the number of 
the dataset input instances passed to the model 
per unit layer. The batch size was set to 32 units 
with the max epochs set to 10 epochs, a learning 
approach of 0.0001, with Adam set as the 
optimizer and drop out of 0.2 for each of the 
layers of the model (Essentially, it is important to 
note that the values for the defined parameters 
were tweaked for several ranging values, the 
presented values are the ones that gave the best 
performance based on the experiment 
conducted). 
 

Table 1. Parameter setting 
 

Parameter  Value 

Batch Size 32 
Max epochs 10 
Initial learn rate 0.001 
Optimizer Adam 
Drop 0.2 

Loss Sparse Category 
Cross Entropy  

 

4.3 Feature Selection  
 

As aforementioned the study incorporates a 
feature selection technique using the information 
gain algorithm. The essence of the feature 
selection is to reduce the dataset dimensionality 
and further eradicate less correlated features in 
the detection and classification of Android 
malware.  The algorithm ‘information gain’ allows 
the specification of the number of features to be 
selected using a value called the k-threshold. 
The value of k as a threshold was set to 10 
during the experiment. 
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4.4 Results Presentation  
 

The results of the Android malware detection 
study present a comprehensive evaluation of 
three different algorithms: Artificial Neural 
Network (ANN), Decision Tree (DT), and the 
Hybrid approach as shown in Table 3. These 
algorithms were assessed based on several 
performance metrics, including accuracy, 
precision, recall, and F1-Score. The Artificial 
Neural Network (ANN) achieved an accuracy 
rate of 71%. In terms of precision for classifying 
malware (1), it exhibited a precision of 68 and 
83% (benign and malignant), indicating that it 
correctly identified malicious software a 
significant portion of the time. However, the recall 
rate for malware (1) detection was relatively high 
at 95 and 34%, suggesting that the ANN tended 
to identify most of the actual malware instances. 
Consequently, the F1-Score for malware 
detection stood at 79 and 48%, reflecting a 
relatively balanced performance between 
precision and recall. On the other hand, the 
Decision Tree (DT) algorithm outperformed the 
ANN in terms of accuracy, achieving an 
impressive accuracy rate of 94%. This indicates 
that the DT model made fewer misclassifications 
overall. Furthermore, the precision for malware 
detection was notably high at 97 and 89%, 
demonstrating a strong ability to correctly identify 
malicious applications. The recall rate for 
malware detection was also commendable                    
at 92 and 96%, indicating that the                               
DT model   managed to capture a substantial 
portion of actual malware instances. 
Consequently, the F1-Score for malware 
detection was a robust 95 and 92%, suggesting a 
well-balanced performance between precision 
and recall. 
 
The Hybrid approach emerged as the top 
performer among the three algorithms, boasting 
an impressive accuracy rate of 99%. This 
signifies an exceptional ability to classify 
applications accurately. Notably, the precision for 
malware detection in the Hybrid approach was 
an astounding 99%, indicating an almost perfect 
precision in identifying malicious software. The 
recall rate for malware detection was also 

impressive at 100 and 98%, signifying the 
model's capability to capture nearly all actual 
malware instances. Consequently, the F1-Score 
for malware detection reached an impressive 
99%, underscoring the Hybrid approach's 
outstanding balance between precision and 
recall. 

 
In summary, the results show that the Hybrid 
approach significantly outperforms both the ANN 
and DT algorithms in terms of accuracy, 
precision, recall, and F1-Score. While the ANN 
and DT models exhibit respectable performance, 
the Hybrid approach's exceptional precision and 
recall make it a promising candidate for Android 
malware detection, with the potential to provide 
highly accurate and reliable results in real-world 
applications. Fig. 2 shows the graphical result of 
the algorithms used [16]. 

 
Table 2. Shows the selected features for the 

dataset 
 

S/N  Andriod Network Traffic 

1 Name 

2 TCP-Packets 

3 Dist-Port-TCP 

4 External IPs 

5 DNS-Query-times 

6 UDP-packets,  

7 Source App Packets  

8 Remote App Packets 

9 Source App bytes 

10 Remote App Bytes 
 

4.5 Receiver Operating Characteristics 
 

To visualise the performance of the                    
developed model on the applied Android network 
malware datasets, the receiver operating 
characteristic was applied. The ROC curve                      
is a graph that shows the performance of a 
classification model at all the classification 
thresholds. The curve normally plots                              
two parameters namely the true positive and 
false positive rate. The ROC for the models is 
shown in Figs. 3-5 [17,18].  

 

Table 3. Android network traffic dataset result 
 

Algorithm Accuracy (%) Precision (0/1) 
(%) 

Recall (0/1) 
(%) 

F1-Score (0/1) 
(%) 

ANN 71 68/83 95/34 79/48 

DT 94 97/89 92/96 95/92 

Hybrid  99 99/99 1.0/98 99/99 
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Fig. 2. Result comparison visualization 
 

 
 

Fig. 3. ANN malware model (ROC and AUC) 
 

 
 

Fig. 4. DT malware model (ROC and AUC) 
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Fig. 5. Hybrid malware model (ROC and AUC) 
 

5. CONCLUSION  
 
This study after an extensive survey of the 
malware detection techniques applied machine 
and deep learning algorithms namely the ANN 
and Decision Tree algorithm while hybridization 
of the two algorithms via a stacking technique. 
Furthermore, the performance of the developed 
models after applying information gain as a 
feature selection technique was evaluated based 
on some metrics with the accuracy score metrics 
as the major indicators. The comparison of the 
implemented models revealed an accuracy of 
97%, 94%, and 99%. To further scrutinise the 
performance of the best performing, the best 
model performance was compared with some 
state-of-the-algorithms. The result of the 
comparison revealed the hybrid model was 
developed to outperform the state of the 
algorithms with an accuracy score of 99%. 
Hence, in a later study, researchers can apply 
the viabilities of AI-based approaches such as 
the Jaya algorithm for feature selection. 
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