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ABSTRACT 
 

It is impossible to feed the entire population of the world with conventional agriculture in this period 
of sudden climate change and degradation of natural resources. It makes it essential to adapt the 
protected cultivation, which makes it possible to provide favorable conditions for plant growth all-
round the year. Thus, efficient management of protected cultivation techniques helps to obtain 
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sustainable agriculture. For this, modelling of microclimate inside the greenhouse helps to better 
understand the dynamic variability of the microclimatic characteristics and their impact on crop 
growth. For this study, nearly 480 papers were reviewed on different aspects of microclimate 
modeling and machine learning algorithms out of which, 150 articles published in journals of high 
impact factors were selected and up to 80 references were cited in this article. This paper explored 
the available modelling techniques which include Physical-based models (offer high accuracy but 
require extensive computation time) and Data-driven models (faster but necessitate large datasets 
for analysis.). This review helps the researchers to get a detailed knowledge regarding the 
microclimate inside a polyhouse and various models available for greenhouse microclimate 
modelling and their ability to simulate the microclimate efficiently and accurately. Microclimate 
modeling helps understand the dynamic variations within a greenhouse and their impact on crops. 
The limitations of current models (computational time vs. data requirements) emphasize the need 
for hybrid model development. The rise of greenhouse automation and precision agriculture 
underscores the importance of accurate microclimate modeling. This paper, thus highlights the 
critical role of microclimate modeling in sustainable greenhouse agriculture, providing a 
comprehensive analysis of existing modeling techniques and their limitations. Thus, supporting the 
development of automated and data-driven greenhouse management practices. 
 

 

Keywords: Protected cultivation; microclimate modeling; CFD; ML; greenhouse automation. 
 

1. INTRODUCTION 
 

In the era of abrupt climate change, it is 
essential to work towards the development of 
sustainable agriculture. It is made possible by 
adapting the Protected Cultivation technique to 
protect the crop from adverse climatic 
conditions. “The main purpose of protected 
cultivation is to create a favorable                    
environment for the sustained growth of crop so 
as to realize its maximum potential even in 
adverse climatic conditions” [1,2]. Of the 
various protected cultivation techniques 
available, greenhouse cultivation is more 
popular. “Greenhouses are framed or inflated 
structures covered with transparent or 
translucent material large enough to grow crops 
under partial or full controlled environmental 
conditions” [3,4,5,6,7]. With this ability, 
greenhouse cultivation emerges as a 
sophisticated and sustainable method of 
growing plants all-round the year. The                    
primary benefit of greenhouses is their capacity 
to allow farmers to actively control 
environmental growth factors, facilitating the 
year-round cultivation of various crops 
irrespective of outdoor weather [8,9]. The main 
characteristic of a greenhouse can be defined 
as its ability to trap the heat inside the structure 
due to the greenhouse effect. This helps to 
grow the temperate crops even in the cold 
regions proving that plants can be grown even 
in the areas that provide unfavorable 
conditions. The greenhouses used for growing 
particular crops are selected based on their 
type and its respective properties. 
 

“Greenhouse is classified into five types 
according to shape, utility, construction, 
covering material and cost of construction” 
[3,10]. All types of greenhouses influence the 
environment inside it both directly and indirectly. 
“Microclimatic conditions in greenhouse are 
related to the characteristics of greenhouse 
such as size, shape, orientation, covering 
material, shading, cooling, heating, ventilation 
and influencing the crop yield and quality” [11]. 
So, it is necessary to study the impact of 
covering material or types of protected 
structures on microclimate parameters and 
need to be determined for region specific 
structures the most useful [12]. According to 
covering material they are classified as glass, 
plastic film and rigid panel [13,14,3]. and the 
impact of these covering materials is the most 
important factor to be considered when working 
with the greenhouses. “Because, greenhouse 
covering material provide a controlled 
microclimate that may be adapted to the needs 
of the crops, resulting in higher yield, quality 
and in the lengthening of the market availability 
of the products” [15,1,16,17,18]. In order to 
provide controlled microclimate for greenhouse 
cultivation, it is necessary to understand the 
microclimate, why it should be controlled and 
how can it be controlled. The microclimate of a 
greenhouse can be defined as the environment 
surrounding the crop, that effects the crop 
physiological and morphological characteristics. 
“The assemblage of climatological parameters 
forming around living plants inside a 
greenhouse is termed as greenhouse 
microclimate” [9]. 
 



 
 
 
 

Supraja et al.; Int. J. Environ. Clim. Change, vol. 14, no. 8, pp. 150-165, 2024; Article no.IJECC.120214 
 
 

 
152 

 

“The microclimate of a greenhouse is 
influenced by factors such as light, temperature, 
humidity and carbon dioxide concentration” [5]. 
“In order to achieve maximum returns from 
greenhouse cultivation, it is important to 
maintain an environment that promotes 
optimum plant growth and production all year 
round” [19]. The control of microclimate can be 
made possible by adapting various techniques 
such as sensor systems, IoT, development of 
models and use of artificial intelligence to 
predict the inside environment of the 
greenhouse. 
 

2. GREENHOUSE MICROCLIMATE AND 
ITS CONTROL 

 

“Sustainable development of greenhouses can 
be achieved by efficient control and 
management of the greenhouse microclimate. It 
is because of the fact that, greenhouse 
microclimate that directly affects the plant 
metabolic activities and therefore the 
production” [9]. “Hence, the microclimate 
suitable for crop growth inside greenhouses 
must be maintained throughout the year” [20]. 
The control of microclimate refers to the 
optimum management of temperature, relative 
humidity, light intensity and carbon dioxide 
concentration. 
 

“The greenhouse environment is a complex 
dynamical system characterized roughly by two 
main subsystems: the microclimate and the 
crop” [21]. “The crop growth inside a 
greenhouse structure is greatly influenced by 
the dynamic behavior of microclimatic 
characteristics prevailing inside the 
greenhouse. The microclimate can be adjusted 
according to the plants growing conditions and 
therefore, contribute to enhancing the quality 
and quantity of the crops” [22]. The respective 
adjustments of the microclimate parameters 
can be termed as microclimate control. “The 
main reason for microclimate control in 
greenhouses is to achieve desirable plant 
growth and yield” [9,5]. The microclimate 
control can be achieved in two steps. The first 
step in this process can be defined as 
understanding the crop behavior in different 
growth stages and the optimum conditions for 
the crop. The next step is to provide optimum 
microclimate conditions by adjusting various 
parameters. The micro climate conditions 
 

generated inside greenhouse can be controlled 
by analyzing the temperature, air velocity and 
humidity for optimal conditions of plant growth 

[23]. There exist various techniques for 
maintaining the microclimate parameters of 
temperature, relative humidity, light intensity 
and carbon dioxide concentration etc. 
 

2.1 Temperature 
 

Generally, the temperature inside a polyhouse 
is greater than that of the outside. This is due to 
the effect of greenhouse gases trapped inside 
the structure. “Ventilation is required to allow air 
movement and to maintain the lowest possible 
temperature gradient between the outside and 
inside of the greenhouse” [10]. “Temperature 
has a direct impact on the physiological 
development phases (flowering, germination, 
development) of the plant, regulates the 
transpiration rate and plant water status through 
stomatal control during the photosynthesis” [5]. 
“The uniformity of plant development and crop 
productivity in a greenhouse is largely 
influenced by the dispersion of air temperature 
and relative humidity” [24]. Since, the crops 
grown in the greenhouse are warm climate 
species, the temperature should be maintained 
around 20-300 C, although each crop has its 
own optimum temperature range. Temperature 
influences the air circulation, humidity levels 
and ventilation within the greenhouse, 
collectively contributing to the creation of an 
optimal environment for plant growth. “The 
management of the greenhouse environment is 
strongly reliant on temperature manipulation” 
[15]. The temperature inside a greenhouse can 
be controlled by various techniques such as 
ventilation (natural and forced), shading, 
evaporative cooling etc. [25,26]. If the 
temperature inside the greenhouse is less than 
the optimum value required by the crop, the 
temperature can be maintained by the 
provision of heaters. If the temperature is high, 
the greenhouse can be cooled by adapting 
various cooling systems such as natural 
ventilation, fan and pad cooling system, 
shading and evaporative cooling. For the 
purpose of controlling temperature, sensors can 
be used to monitor the temperature and the 
data is analyzed using microcontroller and the 
actuators adapt the respective techniques to 
maintain the optimum temperature. 
 

2.2 Relative Humidity 
 

“Relative humidity refers to the amount of 
moisture present in the air compared to the 
maximum amount the air could hold at a 
specific temperature. The relative humidity 
inside a greenhouse varies inversely with the 
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temperature. Temperature and RH have 
optimal ranges depending on the different 
growth stage of the plant, different greenhouse 
crop and different weather condition and 
whether it is night or day” [26]. “It is often 
recommended that greenhouse relative 
humidity be maintained in the range of 60% to 
80% for healthy growth” [15,5]. If the humidity is 
low, transpiration will be high leading to water 
loss and resulting in dehydration. While, if the 
air humidity is too high, the transpiration of the 
crop will be weakened and the ability to 
transport minerals and nutrients will also 
decrease [27]. The reproductive processes of 
plants are also influenced by relative humidity. 
Proper humidity levels are crucial for pollen 
dispersal and successful pollination. Thus, 
maintaining RH above some minimum value 
helps to ensure adequate transpiration and also 
reduces disease problems [4]. The humidity can 
be monitored using sensors and can be 
optimized by humidification (when the humidity 
is lower than the optimum value) and 
dehumidification (when the humidity is greater 
than the optimum value). The relative humidity 
has a direct effect on the crop transpiration, 
leading to moisture accumulation on plants and 
pest attacks. Achieving and maintaining the 
appropriate levels of humidity is a critical aspect 
of greenhouse management, requiring careful 
monitoring and control to provide an 
environment conducive to healthy plant growth, 
disease prevention and overall crop success. 
“The relative humidity inside the greenhouse 
can be maintained to desired range using 
ventilation during winter (reduction) and 
evaporative cooling during summer” (increment) 
[25]. The humidity can also be maintained by 
adapting the mechanized techniques of 
humidification and dehumidification. 
 

2.3 Solar Intensity 
 

Solar intensity inside a greenhouse refers to the 
amount of diffused light that reaches the crop 
after passing through the covering material of 
the greenhouse. “Light is a key parameter 
which significantly affect the greenhouse crop 
production” [25,28]. “Because, light provides 
energy for photosynthesis and it is one of the 
most important conditions affecting the growth 
and development of the external environment 
crops” [29]. “The amount of light received by the 
crop depends on the covering material and the 
solar irradiation. And, the amount of light 
received inside the polyhouse is always less 
than that of the outside environment. Thus, the 

choice of the greenhouses cover material is 
essential for optimizing crop production” [1]. 
“The light intensity inside the greenhouse was 
always lower (30 – 50%) than the open field” 
[30]. “Optimization and control of the 
greenhouse light environment is key to 
increasing crop yield and quality” [31]. The light 
intensity inside a greenhouse directly effects 
the rate of photosynthesis, color of leaves, fruit 
set and fruit color. Thus, the growth and quality 
of crop is directly influenced by the light 
received. If the light intensity is too high, water 
loss will occur in the cells of the crop. When the 
light intensity is too low, the photosynthesis 
efficiency will decrease [27]. Thus, the light 
intensity should be maintained at optimum 
levels. This can be obtained by shade nets 
(high light intensity) and artificial lightning 
techniques (low light intensity). Maintaining 
optimum light intensity inside a greenhouse 
helps to maintain the crop efficiently, since 
lighting plays an important role in the process of 
photosynthesis. Optimization and control of the 
greenhouse light environment is key to 
increasing crop yield and quality [31]. 
 

2.4 Carbon Dioxide Concentration 
 

The healthiness of a crop can be justified by 
just having a look at it. Healthy crop has bright 
leaves exhibiting the abundant presence of 
chlorophyll. The performance of chlorophyll 
depends on the amount of carbon dioxide 
available for the plant and thus the amount of 
carbon dioxide present in the air directly 

influences the plant growth. In a controlled 

greenhouse setting, augmenting CO2 levels 

can stimulate photosynthetic activity, leading to 
increased biomass production and overall 
growth. Carbon dioxide (CO2) accumulated 
over the day is an important variable which 

affects the plant growth in a greenhouse [25]. 

Elevated CO2 levels empower plants to better 

withstand fluctuations in environmental 
variables, thereby contributing to overall crop 

health and productivity. The net rate of 

photosynthesis increases with the rise of the 
concentration of CO2 in a range between 0 and 

1000 µmol mol−1 [32]. The elevated amount of 
CO2 results in increase in rate of 
photosynthesis up to a limit beyond which the 
elevated values have a negative impact on crop 
growth and quality. “The production of healthy, 

high-yielding greenhouse crops can require the 

uptake of CO2 at rates higher than the ones 

allowed by the typical atmospheric 
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concentration (350–370 ppm). The enrichment 

of the greenhouse atmosphere with CO2 
concentrations in excess of 1,000 ppm has 
been found to be beneficial, with increases in 
growth rates and in some cases increases in 
product quality” [15]. 
 

3. MODELLING AND PREDICTION OF 
GREENHOUSE MICROCLIMATE 

 
“The greenhouse production agro-system is a 
very complex process, where physical, 
chemical and biological processes take place at 
the same time with different patterns and time 
scales. For that reason, model-based tools are 
required as support to understand the dynamics 
of these system” [33]. Greenhouse 
microclimate modelling represents an 
advanced approach within agricultural science 
and engineering, aimed at understanding and 
manipulating the environmental conditions 
within a greenhouse setting. “It is a difficult task 
mainly due to the strong nonlinearity of the 
phenomenon and the uncertainty of the 
involved physical and non-physical parameters” 
[34]. By considering variables like temperature, 
humidity, radiation, and airflow, these models 
offer valuable insights into how these elements 
interact and impact plant growth. “The 
greenhouse environment is a very complex 
dynamic system covered with thin and 
transparent materials” [35]. “Thus, a dynamic 
analysis is required for more accurate 
prediction and control of greenhouse thermal 
environments” [36]. “Simulation models to 
describe the dynamic behavior of the air 
temperature, humidity and carbon dioxide 
concentration inside the greenhouses have 
been published in several studies. Modelling 
the microclimate of a greenhouse differs 
depending on the purpose. There are two main 
categories of models, the physical based, which 
are mainly used if the main purpose is the study 
and knowledge of the natural processes that 
take place within the greenhouse and the black-
box models, if the main objective is the 
applications and design of systems related to 
greenhouse management” [37,38] categorized 
the greenhouse microclimate models as: 
Physical based models, Black box linear 
parametric models and Black box non-linear 
parametric models. “Dynamic models are built 
to augment our knowledge of systems in 
general and to enhance the understanding on 
the dynamics of the greenhouse environment” 
[21]. “The main objective of greenhouse 

microclimate modelling is to quantitatively 
describe the energy and mass transport 
processes by mechanism of convection within 
the medium, the exchange processes between 
air and plant elements and other surfaces, and 
the ways in which plants respond to the 
environmental factors” [9]. 

 
From the studies, it was observed that the 
greenhouse climate models may be broadly 
categorized as either descriptive (also termed 
empirical or black-box) or process-based (also 
termed mechanistic, explanatory, white-box, or 
grey-box) [39]. 

 
3.1 Physical- Based Models 
 
Physical-based modelling of microclimates is a 
comprehensive approach that draws upon 
principles from physics, meteorology and 
environmental science to simulate the intricate 
interactions between environmental factors 
within localized areas. Physical based models 
are developed based on the physical processes 
taking place inside a greenhouse which 
includes the heat exchange and energy 
exchange processes. At the core of physical-
based modelling of microclimates lies a 
comprehensive understanding of atmospheric 
dynamics, which encompasses the movement 
of air masses, temperature gradients and wind 
patterns. The development of a physical model 
presents a high degree of difficulty, especially 
because the greenhouse is a nonlinear complex 
and it is mainly based on the laws of 
thermodynamics and of heat transfer and mass 
transfer [37]. Physical modelling of greenhouse 
climate started already in the seventies, but 
information available is not sufficient enough 
[40,41] constructed a physical-based model 
from the sub-models representing the heat and 
mass transfer processes and these sub-models 
were validated and then the final model was 
verified. In conclusion, physical-based 
modelling of microclimates represents a 
sophisticated approach to understanding and 
predicting the complex interactions between 
environmental factors within localized areas. By 
integrating principles from physics, meteorology 
and environmental science, these models 
provide valuable insights into the 
spatiotemporal dynamics of microclimates and 
their implications for various applications, 
ranging from agriculture and urban planning to 
environmental management and climate 
change adaptation. 
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Table 1. Key findings of reviewed articles 
 

S.no. Theme of 
Articles 

Parameter No. of 
Authors 
studied/Used 

Key Findings 

1. Greenhouse 
microclimate 

Monitoring and control of 
microclimate 

45 Monitoring data provides valuable insights into the greenhouse environment. 
Continuous monitoring of temperature, humidity, light intensity, and CO2 
concentration allows for early detection of deviations from optimal levels. 
Maintaining an optimal microclimate leads to healthier plants with higher yields 
and better-quality produce 

Effect of microclimate on the 
crop 

15 Microclimate has a profound effect on all stages of crop growth, from germination 
to yield. Temperature and humidity play a critical role in seed germination. Light 
intensity, temperature, and CO2 concentration all influence vegetative growth. Day 
length, temperature fluctuations, and light intensity can significantly affect 
flowering and fruit set. 

Greenhouse microclimate 
models 

58 Greenhouse microclimate models are crucial for simulating and predicting 
temperature, humidity, light intensity, and CO2 concentration within a 
greenhouse. They can be used to develop control strategies for these systems to 
maintain desired microclimate conditions. They offer insights into microclimate 
dynamics, facilitate the design of optimal growing conditions. 

2. CFD 
(Computational 
Fluid 
Dynamics) 

Greenhouse microclimate 
(Temperature, Relative 
Humidity, Light Intensity and 
Carbon dioxide Concentration) 

66 CFD allows to understand the complex interactions between temperature, 
humidity, light, and CO2, leading to the design of greenhouses with ideal growing 
conditions for various crops. The dynamic variability of the microclimatic 
parameters is analyzed and necessary strategies to be adapted for efficient 
control of these parameters is discussed. CFD simulations can predict humidity 
variations and temperature fluctuations in the greenhouse. 

Ventilation and Vent configuration 88 Through CFD simulations, it is possible to analyze the impact of vent size, 
location, and type (e.g., roof vent, side vent) on airflow patterns. CFD can analyze 
airflow patterns within a greenhouse down to a very detailed level, considering 
factors like wind speed, direction, and turbulence. This leads to improved 
ventilation efficiency, reduced energy consumption, and ultimately, a better 
growing environment for crops. 

3. Machine 
learning 

Microclimate prediction and 
control 

129 Machine learning models are highly effective tools for greenhouse microclimate 
prediction and control. 
These are strong contenders, achieving high accuracy in predicting temperature, 
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S.no. Theme of 
Articles 

Parameter No. of 
Authors 
studied/Used 

Key Findings 

humidity, and CO2 levels. ANNs excel at short-term forecasts and can achieve 
very high accuracy with minimal error. 

4. AI and IOT Cloud based platforms for 
precision control of 
microclimate 

50 Cloud platforms enable real-time monitoring and adjustments to microclimate, 
leading to optimal conditions for plant growth, potentially increasing yield and 
improving crop quality. They allow growers to monitor and control their greenhouse 
environment remotely, improving accessibility and flexibility in managing 
microclimate. 

Greenhouse automation 28 Automated control of temperature, humidity, irrigation, and ventilation creates 
optimal conditions for plant growth, leading to higher yields. Automated systems 
collect and store data, enabling growers to analyze trends and make informed 
decisions about resource allocation and crop management 
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Fig. 1. Flow chart representing the work flow of a CFD model 
 

 
 

Fig. 2. Flow chart representing the work flow of a machine learning model 
 
Physical-based models are also known as 
Process-based models, since the core of the 
model lies in representing the energy balance 
processes. Greenhouse microclimate modelling 
using Computational Fluid Dynamics can be 
characterized as Process-based model. “The 
study of microclimate distribution in greenhouse 
structures in recent years is mainly addressed 
through CFD simulation approaches and from 
dynamic mass and energy balance models” 
[21]. “CFD, which is considerably more complex 
and computationally intensive, allows to 
describe heterogenous attributes of the 
greenhouse air and their change through space 
and time” [42]. “CFD (computational fluid 
dynamics) has been used to replicate 
greenhouse conditions and study the effect of 
ventilation arrangements, air velocities and 

other parameters on the conditions inside the 
greenhouse” [10]. “In particular, three-
dimensional CFD analyses have been 
successfully used to predict and improve                   
the air profiles surrounding the growing crops” 
[43]. 
 
Numerical analysis based on computational 
fluid dynamics (CFD) can predict and analyze 
the airflow characteristics of the model that are 
difficult to be analyzed by experiments [44]. The 
CFD technology has been shown to be an 
effective and mature tool to be used in 
controlled environment agriculture for analyzing 
aerodynamics, climate and complex fluid 
phenomen [45,46,47,48,49,50,51]. Thus, CFD 
has been studied by many researchers in 
various aspects.  
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Computational fluid dynamics (CFD) has been 
used as a powerful tool by various researchers 
to investigate distributed climate 
heterogeneities inside a greenhouse and in 
particular inside a crop [52],simulating 
physically complex phenomena and the 
distribution of climate parameters [51], to 
simulate the climate inside greenhouses [53], to 
evaluate the efficacy of the ventilation 
strategies and for analyzing the flow within plant 
factories or greenhouses [54], to analyze the 
airflow pattern on the crop canopy under 
different ventilation modes in a single cultivation 
bed [55], to model the climate generated inside 
the greenhouses and for the development of 
structural design improvement with regard to 
ventilation effectiveness [56], to study the air 
flow distribution in a high-pressure plant growth 
system [57], to simulate evaporation and 
condensation processes that occur in 
hemispherical solar stills [58]. 
 

“The specificity of CFD is to allow the 
calculation of variable fields at a set of discrete 
points in the calculation domain through the 
resolution of the corresponding transport 
equations” [53]. “The way the boundary 
conditions are identified and included inside the 
CFD model plays a crucial role in the quality of 
the numerical results” [52]. “Computational fluid 
dynamics (CFD) has been shown to be an 
effective tool in simulating physical complex 
phenomena with reasonable accuracy and 
analyzing environmental uniformity in controlled 
environments” [43]. “Through the advancement 
of software, CFD modeling has seen a 
tremendous amount of improvement recently, 
enabling microclimate research to better 
comprehend the relationships between climate 
variables inside greenhouses. CFD simulation 
has improved in realism and detail over the 
past few years, leading to more precise results” 
[59]. 
 

3.2 Computational Models 
 

Computational models (Black-Box Models) are 
defined as the mathematical models that uses 
mathematical equations to describe the 
dynamic behavior of microclimate inside a 
greenhouse structure. Black-box models are 
based on the system identification (SI) process. 
SI is a methodology that depends mainly on 
experimental input and output data. These 
models provide an effective and accurate 
description of the behavior of various 
parameters without the need to model the 

internal system processes [60]. Mathematical 
modelling of greenhouse climate is the study 
dedicated to quantitatively describing 
horticultural greenhouses and the 
interrelationships between the outdoor weather, 
the indoor climate, the greenhouse structure, 
the climate control equipment, and the 
cultivated crop [42]. 
 

Data driven models refers to the application of 
Machine learning models and Artificial Neural 
Networks that use data as the main input to 
model and predict the greenhouse 
microclimate. Machine learning describes the 
capacity of systems to learn from problem- 
specific training data to automate the process of 
analytical model building and solve associated 
tasks [61]. These models analyze the available 
historical data to predict patterns and behavior 
of dynamic variability of the microclimate.ML 
means that a computer program’s performance 
improves with experience with respect to some 
class of tasks and performance measures [62]. 
Machine Learning (ML) techniques have proven 
robust, reliable, and efficient in dealing with 
sparse and multivariate climate datasets [63]. 
Data driven/machine learning technique-based 
approaches have also been applied for 
greenhouse crop yield forecasting in many 
studies, which treat the crop yield output as a 
very complex and nonlinear function of the 
greenhouse environmental variables and 
historical crop yield information [64]. An Artificial 
neural network (ANN) simulates human brain in 
establishing relationships between inputs and 
outputs. It constructs its knowledge background 
from historical data [59]. One of the primary 
advantages of ANNs is their capability to predict 
based on patterns and relationships in input 
factors, with a wide range of applications, 
including image and speech recognition [65,66] 
and hydrological and environmental forecasting 
[67,68]. A neural network initially captures how 
the internal climate properties and sensor 
signals interact, which is then shown 
linguistically via an algorithm based on fuzzy 
logic [69]. Advanced non-linear techniques like 
ANNs or machine learning algorithms are often 
explored to model complex systems. These 
techniques are designed to capture non-linear 
dynamics that may exist in the data, leading to                     
more reliable and accurate results than linear 
techniques in many cases [70]. Accurate 
prediction models for greenhouse and plant 
growth performance can be used as a design 
tool and in economic feasibility analyses as well 
[36]. 
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Since, greenhouses are complex and non-linear 
systems [71], an efficient climate-based 
management for these systems require 
algorithms that can autonomously learn the 
underlying patterns within the collected data 
then map them to the most optimized control 
[8]. It leads a path for combining the process- 
based and data driven models. With the rapid 
development of computing power and higher 
data availability, developing hybrid frameworks 
that combine physics-based and data-driven 
approaches is becoming increasingly popular 
among researchers [72]. 
 

4. EMERGING TECHNOLOGIES 
 
Greenhouse monitoring and automation are 
currently one of the most discussed subjects in 
the agriculture sector [14]. The purpose of an 
automatic greenhouse is to ensure that the 
plant needs are covered in an efficient and 
accurate way [73]. Smart greenhouse farming is 
an emerging indoor farming that refers to 
managing the greenhouse using information 
and communication technologies (ICT) to 
increase the crops’ quantity and quality while 
optimizing the human labor required [74,75,28]. 
In this regard, wireless sensors and remote 
monitoring-and-control instrumentation that 
benefits from the concept of the Internet-of- 
Things (IoT) have been deployed in smart 
farming to help growers stay updated [76,77]. 
Modern high-tech greenhouses feature an array 
of standard sensors for monitoring light, 
temperature, humidity, and CO2 levels. These 
are complemented by various actuators for 
active control, including lighting, screening, 
heating, ventilation, cooling, CO2 dosing, 
fogging, dehumidification, irrigation, and 
fertilizer dosing. This comprehensive control 
allows for meticulous management of all critical 
growth factors essential for optimal crop 
production at any given moment [78]. 

 
This review of numerous studies on 
greenhouse microclimate control and modeling 
techniques reveals a key insight, that efficient 
microclimate optimization can significantly 
enhance greenhouse productivity. While 
modeling techniques (ML and CFD) have 
limitations, they offer valuable tools for 
maintaining ideal growing conditions. The 
optimal modeling approach depends on several 
factors, study purpose, greenhouse type, data 
availability, time constraints, accuracy 
requirements and financial resources                
[79-81].  

Choosing between CFD and machine learning 
models for greenhouse microclimate 
management involves a trade-off between 
accuracy and efficiency. CFD models offer 
unparalleled detail and physical accuracy. They 
can simulate complex interactions between 
airflow, heat transfer and plant growth, allowing 
for highly precise predictions of microclimate 
variations within the greenhouse. CFD 
simulations require significant computational 
power and expertise to set up and interpret [82-
85]. 
 

Machine learning models, on the other hand, 
excel at processing large datasets and 
identifying patterns. They can learn from 
historical sensor readings to predict 
microclimate changes and recommend 
adjustments to control systems [86-88]. This 
translates to faster analysis and potentially 
lower implementation costs. However, the 
accuracy of machine learning models depends 
heavily on the quality and quantity of training 
data [89,90]. 
  
In the end, there's no single "best" model. The 
optimal choice depends on the specific needs 
and resources available [91,92]. CFD offers 
superior accuracy for in-depth analysis, while 
machine learning provides a faster and 
potentially more cost-effective approach for 
control optimization [93-96]. Hence, it can be 
said that both the models are equally potential 
in their own way of processing. As research 
progresses, hybrid models that combine the 
strengths of both techniques might emerge as 
the future of greenhouse microclimate 
management. 
 

5. CONCLUSION 
 

The most practical protected cultivation method 
to accomplish the goal of sustainable 
production is the use of Greenhouses. It is 
important to study the dynamic behavior of the 
greenhouse microclimate for effective 
optimization to enhance the crop productivity. 
This can be done by using model-based 
techniques. In this paper, different modelling 
techniques for greenhouse microclimate 
modelling were presented. The models were 
primarily classified as Physical- based models 
and Data driven models. Numerous 
researchers used CFD and Machine learning 
models for the modelling of greenhouse 
microclimate. The findings of various studies 
represent that CFD offers unparalleled physical 
accuracy for in-depth analysis, while machine 
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learning provides a faster and potentially more 
cost-effective solution for control optimization, 
while describing the disadvantages of these 
models as heavy computational requirements 
and requirement of large spatio-temporal data 
respectively. Hence, it is evident that no single 
modeling approach is a silver bullet, each 
model having its own merits and limitations, can 
be employed based on the requirement of the 
study. Currently, many studies were focused on 
development of hybrid models. By embracing 
these advancements in modeling tools and 
strategies, growers can optimize their 
polyhouse microclimates for sustainable and 
efficient crop production. 
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